
DECIDABILITY AND EXPRESSIVENESS OF LOGICS OF PROCESSES.U)

AUG 80 K R ABRAHAMSON NOOOI-80C-0221
UNCLASSIFIED TR-8O-08-O NI

. IEIEEEEEEEE
IIIIEEEEIIIII
IIIIIIIIIIIIIl
EIEEIIIEIIIEEE

IIIIIIIII

i .0,

________220

BU~ '*1.2
L12I 5

(

.4

t C

Decidability and Expressiveness

of Logics of Processes*

by

Karl Raymond Abrahamson

(Ph.D. Thesis)

Technical Report #80-08-01

2*

This research was supported in part by Office of Naval Research
Contract N00014-80-C-0221 with the University of Washington.

b60 be('rI1
TI

it

lmkH IN

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dei. FnIvertd)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COPLETING FORM, .FE A Tm $III,
_ _ GIT _ACCESSIO NO. I. RECIPIE A

-8I-'ITL , i .. .,,,,', S. TYPE0 0o EO

?ROCESSES, (M'T w- Technical Report
- S. PERFORMING ORO. REPORT NUMSER

" . .. CONTRACT OR GRANT NUMUIER(s)

K1 arl Raymond/Abrahamson / rConxac i-/
C1 N,0014- 9 -C- 221Pi-

9. PERFORMING ORGANIZATION NAME AND ADDRESS --. "ROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science, FR-35 AREA a WORK UNIT NUMBERS

University of Washington NR 049-456/30 Oct 79 (437)
Seattle, WA 98195

11. CONTROLLING OFFICE NAME AND ADDRESS /' .I. ''

Office of Naval Research Aug00j

800 N. Quincy 37S.RMfMSER OF PAGES
Arlington, VA 22217 Att: Dr. R. B. Grafton 177

14 MONITORING AGENCY NAME 6 AODRESS(If dllferent from Controlling Office) II. SECURITY CLASS. (o thie report)

Unclassified

", -- i i/ / Is,. OECLASSIFICATON/OOWNGRAOINGy~V~: /~j j " - /-, _SCHEDULE

iS. ODST RI SU TbN4Y Et ne;t11l Riloi)

Approved for public release; distribution unlimited.

17. DISTRIGUTION STATEMENT (of the betrct 'entered In Block 20, If different from Repooi)

IS SUPPLEMENTARY NOTES

It. KEY WORDS (Continue an reveree i. t ne..r.vetand I lr 6,i block nsebo)

Process logic, dynamic logic, temporal logir, decidability, completeness,
expressiveness.

20. AGSTRACT (Continue an reverse tide of necoeey and IidentIfy by block number)

'=We define and study several logics of processes. The logics CPL and
MPL are based on a second order tense logic, where the two types of variable
range over computation sequences and points on computation sequences. GPL
is a version of the predicate calculus, similar to Parikh's general logic.
MPL is a modal logic, and is the only modal process logic we know of which
incorporates two fundamentally different types of modality. When syntactic
programs are included in MPL, MPL is at least as expressive as PDL+, Parlkh's -

DO 1 1473 EDITION OF NOV IOSSOLVVS Unclassified
' S/04 0107 LF 014 S"Ol

SECURITY CLASSIFICATION OF T1IS PAO* (ten Pfeate Etered

t 7) 1.;I /'

- - . . ._

SCCURITY CL kSFIC.ATIO0% OR T - L *%0ni(4 De

-)SOAPL, Pnueli's tense iogic or Nishimura's process logic, and contains both
Lamport's linear and branching time logics.

We present a tableau method for deciding validity In MPL, based on a new
type of directed graph, called an LL-graph. From the tableau method we derive
a complete proof system for MPL.

Although GPL and MFL are based on the same notions, we find some interest-
ing differences between the two. MPL is decidable in double exponential time,
while even a proper subset of GPL, which can expresS the same properties as
NPL, is nonelementary. We are able to show that GPI, is decidable only when
processes are tree-like, in Parikh's sense. In contrast, our method for de-
ciding MPL in general requires processes which are not tree-like.

Processes are defined on a very abstract level, as sets of computation
sequences. Intrinsic to our definition of a process is the notion of dead-
lock. Both GPL and NPL have provisions for explicitly discussing deadlock,
which most other process logics to date ignore.

We also study extensions to PDL. We show, provided only that basic
programs are indivisible actions, that extending PDL by a concurrency operator,
a global invariance operator and flowgraph programs, among others, adds no
expressive power to PDL. Moreover, there is a better way to decide formulas
in the extended logic than to translate them to PDL. We extend PDL by adding
special Boolean variables, which can be set and tested. Boolean variable PDL
efficiently simulates the above extensions, and is shown to be decidable by a
faster method than by eliminating Boolean variables.

We prove a lower bound on the complexity of B-PDL which is a function of
two parameters, the length of the input, and the number of variables it con-
tains. The proof involves a compression theorem for functions of several
variables, which may be of general use.

, j. -; *; .,. h " . . . -

I -

Unclassified
SII UNITY CLASSIFICATION OP THIS PAGlS(%,ii DU fn Ete .d)

.2.

University of Washington

Abstract

DECIDABILITY AND EXPRESSIVENESS
OF LOGIC AND PROCESSES

By Karl Raymond Abrahamson

Chairperson of the Supervisory Committee:
Professor Michael J. Fischer
Department of Computer Science

We define and study several logics of processes. The

logics GPL and MPL are based on a second order tense logic,

where the two types of variable range over computation

sequences and points on computation sequences. GPL is a

version of the predicate calculus, similar to Parikh's

general logic. MPL is a modal logic, and is the only modal

process logic we know of which incorporates two funda-

mentally different types of modality. When syntactic

programs are included in MPL, MPL is at least as expressive as

PDL + , Parikh's SOAPL, Pnueli's tense logic or Nishimura's

process logic, and contains both Lamport's linear and

branching time logics.

We present a tableau method for deciding validity in

MPL, based on a new type of directed graph, called an

LL-graph. From the tableau method we derive a complete

proof system for MPL.

Although GPL and MPL are based on the same notions,

we find some interesting differences between the two.

HPL is decidable in double exponential time, while even a

proper subset of GPL, which can express the same properties

as MPL, is nonelementary. We are able to show that GPL is

decidable only when processes are tree-like, in Parikh's

sense. In contrast, our method for deciding MPL in

general requires processes which are not tree-like.

Processes are defined on a very abstract level, as

sets of computation sequences. Intrinsic to our definition

of a process is the notion of deadlock. Both GPL and MPL

have provisions for explicitly discussing deadlock, which

most other process logics to date ignore.

We also study extensions to PDL. We show, provided

only that basic programs are indivisible actions, that

extending PDL by a concurrency operator, a global invari-

ance operator and flowgraph programs, among others, adds

no expressive power to PDL. Moreover, there is a better

way to decide formulas in the extended logic than to trans-

late them to PDL. We extend PDL by adding special Boolean

variables, which can be set and tested. Boolean variable

PDL efficiently simulates the above extensions, and is

shown to be decidable by a faster method than by eliminating

Boolean variables.

We prove a lower bound on the complexity of B-PDL

which is a function of two parameters, the length of the

input, and the number of variables it contains. The proof

involves a compression theorem for functions of several

variables, which may be of general use.

i .

I would like to express my thanks to Professor Fischer

for his patience and many hours spent discussing

this work.

______ _____ i

TABLE OF CONTENTS

Page

Chapter 1: Introduction 1

1.1 Processes. 5

Blocking 9

1.2 Programs .r.a. 12

1.3 Truth in GPL and MPL 14

Chapter 2: Boolean Variables in

Propositional Dynamic Logic 16

2.1 B-PDL. 18

2.2 Equivalence of B-PDL and PDL26

2.3 A Characterization of B-PDL. 33

2.4 An upper bound on the complexity of B-PDL. . 42

2.5 A lower bound for B-PDL. 52

A compression theorem. 59

2.6 Multiple variable complexity bounds. 64

2.7 Conclusion 65

Chapter 3: A General Process Logic. 68

3.1 Introduction 69

Why path variables? 71

Relation of GPL to SOPL. 73

3.2 Formal definition of GPL 75

3.3 Nonstandard GPL. 76

3.4 A lower bound for GPL. 81

TABLE OF CONTENTS (continued)

page

3.5 Closed GPL 82

3.6 GPLM....... 90

3.7 open questions. 93

Chapter 4: Modal Process Logic 95

4.1 An introduction to modal process logic . 95

4.2 The logic MPL 98

4.3 Formal semantics of MPL. 100

4.4 Relation of MPL to GPL..0. 103

4.5 Decidability of MPL 109

4.5.1 LL-graphs 110

4.5.2 The decision algorithm for MPL ... 114

4.5.3 Correctness of the

decision algorithm. 123

4.6 Proof and completeness 138

Chapter 5: Programs in Process Logic 153

5.1 Definitions 153

5.2 Formal semantics of MPL/P 157

5.3 Expressive power of MPL/P. 159

5.4 Conclusion 163

References:. 164

Chapter 1

Introduction

in recent years a great deal of effort has gone into

discovering convenient and powerful methods of reasoning

about the behavior of computer programs. There are two

main goals of this research. First, we need a precise

definition of exactly what a program is. At present there

is no general agreement on the exact meanings of programs,

and there is even less agreement on what sort of programs

we should be assigning meaning to. Second, we need a

convenient but precise method of proving properties of

programs. Even when the meaning of a program is understood,

the very general set-theoretic proofs have proved

cumbersome, with most authors choosing more informal

methods. The results have been incorrect or unconvincing

proofs. For example, Dijkstra's on-the-fly garbage

collector [D781 in its original version contained a

subtle bug, although Dijkstra "proved" the program correct.

Below is a brief history of the work leading up to

this work.

Floyd IF1671 and Hoare (Ho691 presented early systems

for reasoning about programs. Those methods are used

primarily for proving properties related to termination of

the program. For example, Hoare's partial correctness

9T

assertion P {A) Q states that if program A is started with

P true, then whenever (if ever) A terminates, 0 holds.

Floyd suggests the well-founded-set method of proving

that a program must terminate, which consists of showing

that going around any loops in the program must result

in the decrease of some well founded quantity.

Partial correctness is far from the only useful

property of programs. Manna and Waldinger [MW78] give

examples where using the condition "P must eventually

become true" leads to natural proofs of interesting

properties of programs. A really useful logic of programs

should permit its user many different methods of reason-

ing about programs. Pratt's Dynamic Logic [Pr76] and later

Harel's DL+ [HP78] bring the "eventuality" and partial

correctness methods together into a single elegant frame-

work. The heart of DL is the formula [A]Q, meaning "if

program A is started in the current state, then whenever

(if ever) A terminates, Q holds." The Hoare style partial

correctness assertion P (A) Q is expressed in DL as

P = [A]Q, which simply states that, if P holds in the

current state, then [A]Q also holds in the current state.

The dual 'A>Q B %[A]%Q of [AIQ states that it is possible

for program A to halt with Q true, Dynamic Logic programs

are in general nondeterministic. Hence it is possible for

<A>Q and <All-Q to be simultaneously true,

Among concurrent programs, programs which terminate

3

are the exception rather than the rule. Typical nonter-

minating programs are operating systems, on-the-fly

garbage collectors, the dining philosophers program, and

so on (see IFP76]). It is clear that termination proper-

ties are inadequate for reasoning about such programs.

Pratt [Pr7B] suggests extending Dynamic Logic by adding

new operators for discussing the behavior of a program

in time. For instance, the operator {A)Q expresses the

global invariance of Q over A, meaning that Q holds through-

out the execution of program A, started in the current

state. Numerous other properties are possible.

Among possible operators for describing the temporal

behavior of programs, Lamport [LBO] identifies two classes:

linear time and branching time operators. Most logics

to date include either one or the other, but not both.

As both have uses, a powerful logic should include both.

By process logic, we mean any language which is

used to express properties of processes, or programs, the

properties in general not being related to the termination

of the process. We have mentioned the process logics of

Pratt and Lamport. Others, which are described in more

detail later, are the process logics of Pnueli (Pn77,

Pn79], Gabbay et al., [GPSS8O, Parikh [Pa78], Harel

et al., [HKPSO], and Nishimura [N79].

In this work we take three approaches to process

logic.

4

1. What sorts of properties can be expressed in a

simple, termination oriented logic, in particular Propo-

siticnal Dynamic Logic (PDL)? In Chapter 2 we demonstrate

that PDL can express much more than is readily apparent.

The power of PDL is revealed by adding auxiliary Boolean

variables to PDL. Such variables add no expressive power

to PDL, though they allow more concise expression of some

properties. In particular, properties regarding the

concurrent execution of programs can be expressed concisely

using Boolean variables.

While PDL can express a surprising number of proper-

ties of programs, it cannot express all that we need.

Therefore we develop more powerful logics.

2. The second approach is the classical approach

of defining a version of the predicate calculus which is

suited to describing processes. We call this logic GPL,

for General Process Logic. Unlike PDL, GPL does not have

programs -- a valid GPL sentence is one which holds for

all processes. The absence of programs makes the presen-

tation of GPL simpler, and allows us to at least partially

analyze GPL.

3. The third approach is to adapt modal logic to

a logic of processes. The logic MPL (for Modal Process

Logic) in slightly less expressive than GPL, but is much

easier to analyze, and to work with in general. We prove

5

that MPL is decidable, and give a complete proof system

for MPL.

Neither GPL nor MPL has programs. In Chapter 5

we consider the addition of programs to MPL. (Programs

can also be added to GPL, but we do not bother to define

GPL with programs here.) MPL with programs is called

MPL/P. MPL/P has at least as much expressive power as

Nishimura's process logic [N791, which in turn is at least

as expressive at Pratt's process logic [Pr78], and

Parikh's SOAPL [Pa78]. We conjecture that MPL/P is more

expressive than all of the above logics.

1.1. Processes

The rest of this chapter is spent defining processes

and programs and discussing the consequences of those

definitions. Of primary importance is the discussion of

blocking, which may differ from the reader's notion.

A process is a semantic entity, as opposed to a

program, which is syntactic. We choose a very abstract

notion of process. There are no communication primitives,

as there are in [Ho76, MM77]. Instead, individual pro-

cesses communicate with each other by altering a common

state, which can be thought of as encompassing all of the

memory of the system, whether private to a given process

or shared by two or more processes. Indeed, there is no

~ 'P

6

notion of several processes inherent to the semantics of

processes. The definition of a process is sufficiently

general that an entire system of processes running concur-

rently can be viewed as a single super process,

Our notion of process is related to Pratt's, in that

a process is a set of computation sequences over a given

set of states U. The main difference is that rather than

being a sequence of states, a computation sequence, or

path, is a sequence of transitions between states. The

transition from state u to state v is written <u-v>.

Additionally, each path has a start state, which is of use

primarily when the sequence of transitions is empty. /
Our definitions are simplified by postulating a spe-

cial state AU, a "block" state. Unlike Pratt's A, our

A can never actually be entered by a process. The role

of A is explained in detail under blocking below.

Formally, the set of paths Y(U) over U and the

set of processes R(U) over U, where U is a countable set

of states, are defined as

*+
V(U) = U x (UxU V <A-A>)

with the condition that if (u, <v.*w>o) t Y(U) then either

v-u or v-A,

11(U) a PMU)).

S*+ & denotes finite and infinite sequences over S, and

P denotes powerset. Some other useful definitions are

fill

7

as follows:

Let V = (u,a) and *4 (u,co) be paths.

I(f) the number of transitions ino (possibly w).

start(*) = u.

u if o=X,

end(N) = w if o=T<V-W>,

undefined if I(M)=w.

P is a prefix of *, if a is a prefix of a', and u=u'.

The concatenation *.4' of * and ;P is defined when

£ (') >0.

if £(p) =

= (u, o0o.) if £() < W

The only restrictions on paths are that 1) A appear

only in the transition <A+Ah, and 2) the start state be

the same as the first state in the first transition (or A).

For example, . = (u, <u-w><y-z>) is an acceptable path,

even when w y. Path * represents a computation sequence

which reaches state w, then moves from state y to state z,

an impossibility. There are reasons for accepting such

absurd paths. One is that some concurrent process, to be

added later, could in fact make the phantom transition

from w to y. Another reason is discussed below. We say

that a path # is lega provided

S- (u,<v-,w><y*z> *) w-y.

- 9

8

The stages S(U) are the finite legal paths over U. If

vT is a process, the set preCIT) is the set of all stages

which are prefixes of members of r.

Transition sequences have some advantages over

ordinary computation sequences (sequences of states).

One is that the concurrent execution of two processes can

be defined simply as the shuffle of the transition sequences

associated with each process. The same is not true for

state sequences, for they don't retain enough information.

Another advantage is that blocking, an important notion

of concurrent processes, is readily defined in terms of

transition sequences. A third advantage is that transi-

tions can be labeled, so that it is possible to tell which

process makes a given transition. Such labels are impera-

sene tha weacih prossfmae iiniptl msay, trnitions

tive ifa weawih torowsifmae gnivnipthl isn faithens

Labels are discussed further in Chapter 5.

As can be seen from the lack of restrictions on

processes* processes are nondeterministic. A process may

have any number of paths whose initial state is U.

Moreover, a process may contain any number of paths, all

with prefix *.Intuitively, that means that, after running

for a while and reaching stage t, there are many possible

ways in which the process might continue. Processes may

exhibit infinite nondeterminism, which means that, even

when the set U is finite, and ignoring blocked paths,

.

9

a given process v might not be the set of paths in any

finite branching tree. Infinite nondeterminism is required

to represent several processes running concurrently,

even when each component process is treelike (see [LF79]),

provided the concurrency operation obeys the finite delay

property: No component of a concurrent system which is

ready to execute a transition infinitely often is forever

denied executing a transition. A simple program which

exhibits infinite nondeterminism is

(while x-O do noop)//(x:.l).

The first component may run arbitrarily much faster than

the second process, but not infinitely much faster.

Hence, assuming x-O at the start, the while loop may be

executed any finite number of times, but not infinitely

many times. We will find that infinite nondeterminism

has special significance in both GPL and MPL, though in

opposite ways. Our decision method for MPL makes use

of processes which exhibit infinite nondeterminism, while

that for GPL cannot deal with such processes.

Blocking

Every path has three possible fates; it may terminate,

run forever or block, A terminating path is a finite

legal path. Infinite legal paths run forever. And a

blocking path is an illegal path, whether finite or

10

infinite. For example, let u and v be distinct states.

(u, <A- A>)

(u, <U'V>U4v>),

and (u, <u-v><A--A>)

are all blocked paths. The transition <u-v> cannot be

executed unless the process is in state u. Note that the

transition <A-A> can never be executed on any path, for

no path may begin in state A, and no transition of the

form <u-A>, for u # A, is permitted. Thus <A-A> is a

"block marker." It is convenient to have such a marker

which must always cause a biock.

Our notion of blocking may be different from the

reader's. In our notion, a block in a path merely means

that the rest of the path is nonsense, suggesting that

some other path be taken. Consider the program

while true do nothing.

In terms of PDL programs, defined shortly, "while true do

nothing" is written

(true?)*; false?.

Suppose U contains a single state u. Then by the defini-

tion in the next section, (true?)*; false? represents the

process v - ((u, <u4u> kA.04): k>O) u ((u, <usu>W)).

Almost all of the paths block. But every stage (u, <u-u>)

is a prefix of some path which does not block at that

.lc-

11

stage. Imagine an interpreter executing r. The inter-

preter must make nondeterministic choices. The choices

can be made by choosing a path, say (u, <u-u> k<A.A>).

kAfter executing <u*u> , the interpreter encounters the

transition <A-A>, which it cannot execute. Rather than

giving up, the interpreter can choose a new path which has

<u-+u>k as a prefix, and so might just as well have been

the chosen path. In fact, the interpreter can always find

a path in r along which it can continue.

The interpreter (or "oracle," since it makes "correct"

nondeterministic choices) just described is not built into

processes in any sense. Rather, the statements which we

make about processes can be looked at as having the form

"when w is evaluated by a smart interpreter (one which tries

other paths when a block is encountered on one path), then

w obeys property p." For example, if we want to state

that r cannot block, we do not say that v contains no

blocked paths, but instead say that every legal prefix of

every path in w is a proper prefix of some legal prefix

of some (possibly different) member of w. The formula

itself specifies the degree of wisdom of the oracle.

Reif and Peterson [RPBO carry the ability to specify

the behavior of an oracle even further. In their logic,

a formula can call for an oracle which is benevolent with

respect to choices made by some components, and malicious

with respect to choices made by others. Generally, it is

12

conceivable that some sort of "oracle specifier" could be

added to the box operator of MPL (see Chapter 4), restrict-

ing the range of quantification over paths. We do not

consider oracle specifiers in this work.

1.2. Programs

We use Propositional Dynamic Logic program syntax

for our programs, with the addition of a concurrency

operator. Thus concurrent programs are statically created,

as in [LF79, OG76]. We do not make any provision for

running arbitrarily many copies of a program in parallel,

as in [S78]. PDL programs are particularly easy to give

a semantics for. Also, in Chapter 2 we choose PDL as a

termination logic framework, making PDL programs the most

natural to use for our other logics. For the semantics of

programs, we use processes. Program a represents process

rr(c). Basic programs are just symbols from a set Io ,

and are given interpretation v 0:10-n(U).

We place some restrictions on the processes represented

by programs.

1. w(a) must not contain any paths of length zero.

Each transition represents one unit of time. If a can

completely execute in zero units of time, then o* can

execute infinitely many times in zero units of time,

an undesirable situation.

2. For every state u, w(a) contains at least oneI.

13

path starting at u. This is really no restriction, since

it(a) may contain only the path (u, <A-A>), which blocks

without doing anything at all. This is mainly a technical

restriction, making definitions slightly easier.

The syntax and semantics n:programsfn(U) of programs

is given below. Let a and 8 be programs.

1. Any basic program is a program, with

n(A) - T 0 (A).

2. a u 0 is a program. a u 8 means "nondeterminis-

tically choose to run either a or 8." r(a u 8) = r(a)

u r(8).

3. a;$ is a program. 0;0 means "run a. followed

by B." 7r(a;0) = w(O)*n($) (concatenation of processes).

4. a* is a program. a* means "run , any number

(possibly w) of times, the choice being made nondetermi-

nistacally. 7t(o*) - w(a)*+W.

5. a//8 is a program. a//Bmeans "run a and 8 in

quasi-parallel." w(a//B) is the smallest set which

satisfies the following:

Suppose (u, ul a2 ...) c v() and

(V, T1 .T 2 ...) I (8),

where a1 and -r are nonempty. and ai and -i are either

empty or finite or infinite for i>1.

Then

(u,o 1 . 1 .0 2 ot 2 ... C ,r(a//O)

and (v,r 1 .a 1 .r 2 .o 2 ...) £ w(a//0).

14

By our definition, c//B does not obey the finite

delay property. It is possible to define a//$ with finite

delay, by insisting that each Ti and o. be finite. We

will sometimes consider this alternate definition of //

in the work that follows.

6. If p is a formula of a certain type, which may

be different for each logic, then p? is a program. The

truth value of p must depend only on a state. When p

is true, p? executes a null transition. When p is

false, p? cannot execute, and so must block.

r(p?) = {(u,<u-u>): p holds in state u}

u {(u,<A-A>): p does not hold in state u)

1.3. Truth in GPL and MPL

The logics GPL and ML are defined in terms of a Kripke

style truth value semantics. A structure A - (U,,, ' 0)4

consists of a set U of states, a process n in 1(U), a

set 0 of basic formulas or predicates, and an interpre-
0

tation fo: 04P(U) which assigns to P the set of states

where P holds. The truth value of a formula depends on

a structure, as well as some additional parameters, which

differ slightly between GPL and MPL, mainly because a

GPL formula may have many free variables whose values

must be specified. An environment, or model, contains all

of the information necessary to determine the truth value

of a formula. For each logic, a relation E 0 P, read

i-.-~-* '.*_ _ _ _ _ _ _
"- - " " "' = - "* ' ' '! _.L'.7 " .,_______________." " " " i ,- "<'/

15

"E satisfies P,11 between environments and formulas is

defined. We say that a formula p is satisfiable if there

is some environment E which satisfies P. We say that

p is valid if 11p is not satisfiable, i.e., if p is

satisfied by every environment.

Chapter 2

Boolean Variables in Propositional Dynamic Logic

A reasonable first approach to dealing with concurrent

programs is simply to add a concurrency operator to an

established sequential program logic, such as Propositional

Dynamic Logic. The semantics of programs may have to be

changed to be able to define the concurrent execution of

two programs. Such a logic would be suitable at least

for describing termination properties of concurrent pro-

grams. (As we show below, it is capable of much more.)

PDL programs are close to regular expressions. It is

well known that the shuffle of two regular sets is a

regular set [GS65]. Hence it would seem reasonable that,

at least in some cases, the concurrency operator could be

expressed in terms of v, ; and **That is the case when

basic programs must be indivisible, i.e., every path

in v70 (A) must have length one.

For the rest of this chapter we adopt the convention

that basic programs are indivisible. In this view, basic

programs represent low level instructions, which are

executed in a single step, as opposed to more complex

programs. The restriction to indivisible basic programs

greatly simplifies the study of concurrency, by allowing

us to know just how programs can be interleaved. if A

17

and B are two non-indivisible basic programs, it is

difficult to know what A//B will do, given only the

behavior of A and B individually. We are not the first

to restrict basic programs to indivisible actions (see

e.g. [OG76, Pn77, RP80, N79]).

Infinite paths in 7T(a) can have no bearing on the

truth of [alp, which only states that the finite legal

paths end on a state satisfying p. So eliminating all

infinite paths from all processes can have no effect on

the truth of any PDL formula. Consequently, the two

possible definitions of PDL//, one with finite delay and

the other without finite delay, must in fact be identical.

Until we leave the realm of PDL, we can ignore the question

of finite or infinite delay.

Although concurrency can be eliminated from PDL

programs, the elimination is costly, the best known method

causing a double exponential length blowup. We certainly

would hope for a better method of handling concurrency

than the brute force method of considering all possible

ways of interleaving programs. Such a method does exist.

Suppose we introduce into PDL auxiliary variables, whose

values can be assigned and tested without affecting in

any way the behavior of basic programs. Those variables

could be used to efficiently write an "interpreter,"

which evaluates a concurrent program. By storing one or

more program counters in variables, the interpreter can

18

remember where one or more programs are at each instant.

The auxiliary variables can also be used to help express

properties other than simple termination properties of

programs. For example, to state that p holds throughout

the execution of a, we simply write [I]p, where I is

an interpreter for a which may halt at any time during

the evaluation of a.

Below we define an extension B-PDL of PDL which in-

cludes Boolean variables. We list a number of concepts

which B-PDL can simulate. We also show that every B-PDL

formula is equivalent, in a sense defined precisely later,

to some PDL formula. Consequently, any concept which can

be expressed in B-PDL can also be expressed (albeit less

concisely) in PDL. We prove upper and lower bounds on

the time complexity of the satisfiability problem for

B-PDL. A related upper bound naturally applies to any

logic which can be efficiently simulated by B-PDL.

2.1. B-PDL

We begin by giving formal definitions of sequential

PDL and B-PDL. Because the box operator of PDL only looks

at the first and last states of a path, we can simplify

the semantics of programs, letting each path consist only

of a start state and a final state. A program represents

a set of such paths, which is just a binary relation

over states.

19

After defining B-PDL, we show informally that B-PDL

can efficiently simulate certain notions, such as

concurrency, which really require that programs represent

sets of paths rather than binary relations. Given the

definition in Chapter I of r(a), the reader should have

little difficulty in extending our relational definition

of B-PDL to a definition based on processes. A formal

proof that concurrency can be eliminated from B-PDL

formulas naturally must be carried out in a version of

B-PDL which includes concurrency, and whose programs

represent processes rather than relations.

The following definition of PDL is taken from

[FL79]. A PDL structure A = (U, 4) 0 Z 0' PO) consists

of

U = a set of states;

-= a set of basic formulas;

L= a set of basic programs;

o: o 0 P(U), assigning to each basic formula the

state where it holds;

PO : E 0 * (Ux U), assigning to each basic program

a binary relation over U.

The programs E, formulas 0, and their associated

semantics p: 1 * P(UxU) and 0: *0 P(U) are defined

inductively as follows.

20

Programs

1. A E E o is a program with p(A) = P0 (A).

2. Let aa c Z, p E 4).

a) ci V c , p(cLVu) = p(c)u p();

b) cx;B E E, P (c; a) = p(a) -.

(composition of relations);

c) cl* C , p(c*) = p(a)* (reflexive

transitive closure of a

relation);

d) p? c r, p(p?) = {(uu): u C 0(p)).

Formulas

1. P c 4) is a formula, with d(P) = (P).

2. Let p,q c 0, a c E.

a) '%,p E 41, 4 0,p) = P(U) - (p)

b) p v q c 0, *(pv q) = ¢(p)u (q).

c) <c>p C 4, 0(<a>p) = {u: 3 v((u,v) c P(a)

and v £ 0(p))).

([alp is defined as %,<a>,vp.)

For a thorough discussion of PDL, see [FL79]. *e

generally write u 0 p for u E O(p). The symbols A,

M, -, etc. have their usual meanings. We remark that

the PDL program constructs can express the usual if-then-

else and while-do constructs, as

if p then a else b - (p?;a) u (vp?;b),

while p do a - (p?a)*; -.p?.

..*4i.'*
- .* .. :-+ . '...oi::",l ,

21

We proceed now to B-PDL. A B-PDL structure contains,

in addition to all of the members of a PDL structure, a

set V of Boolean variables. If x is a Boolean variable,

then x is a formula, and xf(set x) and x+(reset x) are

programs. The truth of a formula depends not only on a

state u, but also on a set s containing the Boolean varia-

bles which are true. Programs of B-PDL represent relations

over U x P(V), with the basic programs altering only the

first component, and the set and reset programs altering

only the second component. Using separate components

achieves the desired independence of variable actions and

program actions which is necessary to write the sort of

interpreter described earlier. The sets EB of B-PDL

programs and 0B of B-PDL formulas, along with their

respective semantics PB: EB _ P((U xP(V))2) and B

4B p(Ux P(V)) are defined inductively below.

Programs

1. A t 0 is a program in ZB with

PB(A) = {((u,s), (V,s)): (u,v) £ P0 (A), s S Vi.

2. Let x c V.

a) xf C ZB' PB(xt) = ((u ' s), (u,s')): s =

su (xli;

b) X+ CI EBp PB(x) - {((us), (u,s')): so =

W - (xi).

-- V--~

22

3. a v, ot; and a' are defined exactly as for

PDL. If p is in BP then p? is a program, with

PB(P?) = {((u,s), (u,s)): (us) C OB(p)).

Formulas

1. P C 0 is a formula, with B = x(P)x P(V).

2. x c V is a formula, with B(x) = U X {s Q V:

X C S).

3. Let p,q c CB' a £ CB*

a) %p c 0B' B (p) = U X P(V) - OB(p)

b) p v q c 0B' %(pv q) = (P) V OB(q);

c) <U>p C 0B' 0 B(<U>p) = {(u ' s): (3 v C U,

tsoV)((us),(Vt)) £ PB(a) and (v,t) c OB(p)}.

We write u,scp for (u,s) C *B(P). Below is a

list of examples demonstrating the power of B-PDL.

1. Integers in the range of 0 to 2n-I can be

represented using n Boolean variables. It is routine to

write a program of length 0(n) which adds or subtracts

two such integers, or tests them for equality, or deter-

mines which is larger. Bounded quantification over the

range [0, 2n_11 is expressed as Yx - [x - random], where

x . random - (x1 u x1 +); ... , (XnfU xn+).

2. The program an - a; ... ; a(n times) can be

abbreviated using Boolean variables, representing integers

up to n, as follows:

23

I - 0;

while I n do (a; I I + 1).

This program has length 1(a) + 0(log n), which may be

considerably shorter than nt(a). The programs xf, x4,

x? and "x? used in the while-loop cannot affect the state

component of (u,s), and so cannot affect the running of

6, so long as none of the variables used to simulate I

appears in a.

3. Using small integers, we can convert a flowchart

of n boxes, whose boxes contain basic programs and tests,

to a length O(n log n + length of all tests) B-PDL program.

The program has the form S; (U Ti)*; F?, where S sets a

counter to the start box; T. tests if the counter is i,

and if so performs the action in box i, then setting i

to the number of the next box; and F tests for a final box.

The length of the Boolean variable simulation of a flow-

chart is generally much shorter than the standard PDL

simulation, which must be exponential in n in the worst

case. Decidability of PDL with flowchart programs follows

from the decidability of B-PDL. Pratt [PraO gives a

single exponential time decision method for PDL with

flowcharts, which is slightly better than that obtainable

from B-PDL.

4. Any length n program can be changed to the form

S; (U T F? of example 3, with a factor of c log n
i

length increase for some constant c. Simulations below

24

make use of this program translation.

5. Subroutine calls to bounded depth, with small

integer parameters, can be simulated in the obvious way.

6. Concurrency can be simulated by allowing more

than one counter to be active at a time. Each pass

selects which counter is to be used, then uses it in the

usual way. The nondeterminism inherent in concurrent

programs is simulated by the nondeterminism which is built

into PDL. This simulation treats basic programs as

indivisible actions.

7. A kind of labeling already is in use. It is a

simple matter to allow syntactic labels in programs, and

to test for being at a given label, or in a given region

(using special binary encodings, which allow for testing

only the most significant bits). We can also test which

program made the last transition, using a backup counter.

8. Global invariance of p over a can be expressed

in B-PDL. If S; (U Ti)*;F? is an equivalent program to

a, then "p holds throughout the execution of a" is

expressed as IS; (U Ti)*]p, where the termination test

has been omitted. Ti executes a single step of a.

9. We can test whether every possible execution

sequence of a program must obey p while q, which says that,

as long as p holds, q holds. If a is represented by

5; (U TQ);F?, then a satisfies p while q provided

25

•"IS;(q?; U T (q p)

The two occurrences of q can be reduced to one by the use

of more Boolean variables.

10. B-PDL simulates "p holds at the next instant"

by only running V Ti once. The operator "until" of
1

IGPSS80] is shown in Chapter 4 to be expressible in terms

of while and "next." Hence in B-PDL we can express that

every path of a satisfies p until q. However, B-PDL

cannot simulate nexted whiles or untils, at least under

the meaning of [GPSS80]. For each time an "until" simu-

lation is done, B-PDL requantifies the path in question.

That is, B-PDL can only simulate branching time modalities,

in the sense of [LBO].

11. Using interpreters, it is possible to "remember"

as program counter from one modality to the next. Con-

sider the statement "a preserves p," i.e., "a never changes

p from true to false." Letting S;(U Ti)*;F? be an
i

interpreter for a, "a preserves p" can be expressed in B-

PDL as [S][(U T.)*](pm [(U T.)*Ip). In words, after

a is started and run for some number of steps, if p holds,

then continuing a for any more steps must lead to a state

where p holds. IS]I U Ti)*]p is just an expression ofi
global invariance. Pratt's process logic (Pr78] includes

a global invariance operator (acp. But {})(pm{a)p)

does not express "a preserves p," for the nested ()p

26

restarts a. Pratt's logic, as well as Parikh's SOAPL

(Pa78] and Nishimura's process logic [N79], have no

obvious means of expressing that a should take up where

it left off.

In (S][(U Ti)'] (p ,[(U Ti)*]p), we must write1 i

U T.)* twice. It would seem more reasonable to invent

a form such as a.[](pD 1]p), where a- means IS], and idetermines all Ti, and (U T.)', or its semantic equi- '

valent, is implicit in each box. Such a form is introduced

in Chapter 5.

B-PDL has been shown to be a rich language, and

merits study. B-PDL is also interesting in its own right

as PDL with very simple assignment programs. The remainder

of this chapter is devoted to proving results about B-PDL.

We begin by proving that Boolean variables can be

eliminated from B-PDL formulas. We then give a character-

ization of B-PDL in terms of PDL, and using it, show

that the satisfiability problem for B-PDL is decidable

in nondeterministic time cn3 m , where n is the length of

a formula, and m is the number of distinct Boolean varia-

bles which it contains. Lastly, we prove a deterministic

time dn lower bound on SAT(B-PDL).

2.2. Equivalence of B-PDL and PDL

Since B-PDL formulas can reference Boolean variables,

it is clear that PDL cannot strictly express as much as

27

B-PDL. But if the initial values of all of the Boolean

variables are fixed, then we can show that PDL can

express just as much as B-PDL. Precisely, for every set

s of Boolean variables, there is a map T5 from B-PDL

formulas into PDL formulas for which u,s 0 p iff u tI T (P)

for every state u , and every B-PDL formula p.

It is easy to see how to translate a formula of the

form [a]p to PDL, where a may contain programs of the

form xt, x4, x? and lx?, but not arbitrary tests. Begin

by constructing a nondeterministic finite automaton F

equivalent to regular expression a, treating xl, x4, x?

and "-x? as symbols of the alphabet. Next, if a contains

m distinct Boolean variables, make 2m copies of F, one

for each different subset of the Boolean variables. Arcs

labeled xt and x4 are eliminated by turning them into

X-arcs between copies of F. x? arcs are either turned

into A-arcs or are erased. Finally, the resulting finite

automaton is converted into a regular expression. We see

that, if a is of length n, then the program a' which we

construct from a has length c n2 for some c. The upper
m

bound cn m is very poor when m-O, in which case our trans-

lation causes an exponential blowup when no change at all

is necessary. Nevertheless, when m is large, we conjec-

ture that the bound is tight. A double exponential lower

bound is proved in [ASO] on the length blowup incurred

in translating Boolean variable regular expressions into

.... , : . . . - ,,, ,, .. .

28

ordinary regular expressions. Hence there is a B-PDL

formula Ic]P which is not equivalent to any short PDL

formula of the form [a']P. That does not preclude the

possibility of a short PDL formula equivalent to [a]P

which is of some altogether different form. The best

lower bound we can prove is single exponential, resulting

from translating [Ak p to [A; ... ; Alp.

We now describe the translation Ts -

Theorem 2.1. Let p be a B-PDL formula of length n,

containing m distinct Boolean variables x1 , ... xm, and

let s be a subset of {xI , ..., Xm}. There is a map T
s

0B 4 such that for every state u, u,s p iff u l T (p),

and Ts(p) has length at most O(n + d n2), for some d.

Proof. Let i be the kth bit, numbered left to
(k)

right, of the binary representation of i. Let ti be

the conjunction of Boolean variables and their negations

which is true iff xI ... xm is the binary representation

of i. Let si be the program which sets x I ... x to the1 m

integer i. The vector [po' "I., P2m-i of formulas

2 m-i

represents the formula V (t.A p.). The matrix
i=O M

2m-l 2m-1

[ij]2 M 2m represents the program U U (ti?;
i=O j-O 1

aii; sj). Define the length of a vector or matrix as the

length of its longest component.

29

We inductively define translation T which maps every

B-PDL formula into a vector formula whose components

contain no Boolean variables, and which maps every B-PDL

program into a matrix program each of whose components

contains no Boolean variables. Simultaneously we prove

that p - T(p) and p(a) = p(T(a)) in every structure.

T (p) is just the component of T(p) in the position

corresponding to s. Let £ = 2m-1.

P. T(P) = (P, ... , P), and P - T(P) is trivial.

xk. T(xk) = [q 0 , qX], where

1 { true if i(k) 1

false if i(k) = 0

The proof that xk -T(xk) is trivial.

Let T(p) = [p ".'' p £] " Then

T (,'p = p " ' ' ' ^-P] "

We prove by induction on m that 'ipo' """f P,]

Basis. (m=0). 1[p - hp I.
0 0

Induction. Let 10 and I1 be disjoint index sets such

that 1oU I 1 = (0, ... , 2 - 1), and i c I0 iff i = 0.

Let ti (.)x m A t i .

p -U Ip of ... , P 2 ml]

2 m-I
-- V ti A Pi'

Vt-I .I

E7 ..m

30

"(x (tA Vp)) v (x m i lV (tA(pi))),

m iI 1 1 icI01

Each index set I° and I1 covers all possible subsets of

xI, x 1- so V t, A p and V t, A p are vector' "' ' Xm l' i I iEI
10 d 1

formulas. By induction

(X Vx V (t A . A O('MXV V (t'^ ALpmiCio icil P

By the tautology (a v b) A (%a v c) - (-a A b) v (a A c)

p Ox A V (t A -p .V(x AV (t' AP,)

m icI 0li icIi
0 o

= %, [0P .. 1 P 2 m -1]

by the choice of the index sets.

pvq. Let T(p) = [p o "''' p£] and T(q) =
0X

[q ... , q£]. Then T(pv q) = [p q

p2v q], which is easily shown to be correct.

<.>p. Let T(p) = [p o "''' p£] and T(a) = Icij]2m 2 m

then

T((ctlp) = [ail]. (oi [0

the matrix-vector product with + =v and • = 9, where

a * p - <a>p. It is straightforward to show that T(<c>p)

(cp.

31

T is defined below for programs. None of the cases

presents any difficulty, and correctness proofs are

omitted.

A.

T(A) 4 ".. , where 0 = false?.

Xkt. T(xkt) = 0i] m , wherek k ~ii 2x2

true? if j(k) = 1 and

S(h) = J(h) for all h k,

false? otherwise.

Xk+. Similar to x k.

p. Let T(p) = [po' " i ." Then

0 1?
T(p). , where 0 = false?.

au 0. T(iu 0) T(a)u T(a) (componentwise union).

a;8. T(a;e) = T()(',) T(8) (matrix multiplication).

OL*. T(*) = T(a)*, the reflexive transitive closure

of T(a) with respect to the () product.

Length of T(p). The length increase due to the

transitive closure for T(*) dominates the others by far,

provided the usual algorithm is used to take matrix

products. When k is a power of 2, the transitive closure

of a k x k matrix can be computed recursively by dividing

~Ii

32

the matrix into four square submatrices, and applying the

formula (see [AHU74, p. 205]).

[* A [A+ BD*C)* (D+ CA*B)*CA*]
C D D*C(A+ BD*C)* (D+ CA*B)*

Let s(k,£) be the length of M* where t is the length ofkxk

M (i.e., the length of its longest component). A simple

substitution argument reveals that s(k,£) < is(k,l).

Let s(k) = s(k,l). The length of the product of two

kxk matrices of length £1 and £2' taken by the standard

multiplication algorithm, is O(k(£ 1 + £2)). That fact and

the formula for M* lead to

s(k) < O(k2) + O(k4)s(k/2) + O(k4)s(k/2) 2 for k> 1,

from which it can be shown that

s(k) = o(c k/k) for some c,

< dk for some d.

Claim. Length (T()) and length (T(p)) are both

O(d), where n is the length of a (or p), and m>0 is

the number of distinct Boolean variables in a (or p).

Proof. By induction on the length of a or p.II
Technically, we must consider each case. Since a*

dominates all others, we show the proof only for a*.

length T(a*) < s(2 m , length T(W)),

< length T(a)os(2
m),

< c d~n'l 2 d2 by induction,

cd n 2m

c[

33

The length part of theorem 2.1 follows from the claim,

and separate analysis of the trivial case m=0. U

The test depth of a formula is defined as the depth

of nesting of the "?" operator, with formulas of test

depth zero containing no tests. Let PDL be the PDLn

formulas with test depth at most n. Berman and Peterson

[BP78] have shown that PDLn+1 is strictly more expressive

than PDL . We see by inspection that our translation fromn

B-PDL into PDL does not increase test depth. Hence

B-PDLn+l is more expressive than B-PDL. That contrasts

with the case of star depth, any program being expressible

with a single star by the use of Boolean variables (except

where stars must be nested solely as a consequence of test

nesting). Cohen [Co70] has shown that regular expressions

require large star depth for full expressive power. We

conjecture that the same holds for PDL.

2.3. A characterization of B-PDL

Rather than defining B-PDL separately from PDL, it is

possible to define B-PDL as ordinary PDL, subject to certain

axioms concerning the behavior of xf and x4. Axioms BI-B4

completely define B-PDL. While Bl-B4 represent a step in

the direction of obtaining a complete axiomatization of

B-PDL, B1-B4 are not the usual type of axiom, being

inexpressible in PDL. Consequently Bl-B4 can't be directly

34

used to either decide or prove the validity of a B-PDL

formula by falling back on the methods used for PDL.

Nevertheless, Bl-B4 can be used to extend theorems about

PDL to B-PDL. In Bl-B4, xt and x+ are considered special

basic programs associated with the basic formula x. Those

basic formulas which have set and reset programs associated

with them are called Boolean variables. A PDL structure

which satisfies BI-B4 is called Boolean with respect to

the set V of Boolean variables and the map which assigns

x+ and x4 to x, or simply Boolean when V and the

map are understood.

BI. The following hold at every state, for every

Boolean variable x £ t and every basic formula or

Boolean variable P c - {x.

a) <xt>true,

b) <xt>true,

C) (Xtlx,

d) [x+1^x,

e) P ' [xt]P,

f) P = [x+)P.

L_ _

35

B2. a) u 9 x ((u,v) c p(xt) u=v),

b) u I ,Lx ((u,v) C p(x) u=v).

B3. a) p(xt;x4) p (x)

b) p(x4;xt) = p(xt).

B4. For all A c E - {xt, x 4 ,

a) P(A;xt) = P(xt;A),

b) P(A;x4) = p(x4;A).

Dl expresses the behavior of xt and X+ relative to

the basic formulas (including x), and requires no justi-

fication. It is clear that B1 alone cannot completely

define B-PDL. For if it did, it would be possible to

decide the satisfiability of any B-PDL formula p by merely

conjoining appropriate instances of B1 to p, and testing

whether the result is a satisfiable PDL formula, violating

the lower bound on SAT(B-PDL) which is proved later. B2

and B3 are required to make a reduction of a Boolean

PDL model isomorphic to a corresponding B-PDL model.

Whether B2 and B3 are required to define SAT(B-PDL) is

questionable. B4 is a statement of independence of xt

and x+ from every other basic program. It is the indepen-

dent action of xf and A % {xj,x+] which is difficult to

enforce using only expressions which can be written in PDL.

The following consequences of B-B4 will prove useful.

Each is stated and proved only for x+, though dual state-

ments for x+ also hold.

- - OVA

36

B5. If u P x then (u,u) C p(xl).

Proof. Immediate from BI(a), B2(a). I

B6. Suppose u I 1x. Then there is a v M u such that

(u,v) c p(xt) and (v,u) £ p(x+).

Proof. By B5 (u,u) c p(x4) = p(xf;x4), which means

there is a v such that (u,v) c p(xt) and (v,u) C p(x4). By

Bl(c), v 0 x, so u # v. I

B7. (Determinism) For every u there is at most one

v such that (u,v) c p(x+).

Proof. If u 0 x, B7 follows immediately from B2.

Suppose u 0 nx. By B6, there is a v such that (u,v) c p(xt)

and (v,u) E p(x+) and v k x.

(u,v') C p(xt) (v,v) £ p(x+;x+) by (v,u)cp(x4),

(v,v') C P(xl) by B3,

v = V ' by B2, since

v x. I

B8. (Reversibility) If (u,v) c P(xt) and u # v

then (v,u) c P(x£).

Proof. Immediate from B6 and B7.

B B9. If A c to {x ,x+) then x J [AIx and %x m [A]^x.

Proof. We prove x 1 (Ajx only.

:1i

37

u x^ (u,v) C p(A) (u,u) C p(xI) A (u,v) E p(A)

by 05,

(u,v) C p(Xf;A),

(U,V) C p(A;xf) by B4,

v(v',v) E P(x),

v P x by Bi.

Theorem 2.2. Every B-PDL formula with Boolean variables

V is satisfiable iff it is satisfiable by some Boolean

PDL structure (i.e., one obeying Bl-B4) with Boolean

variables V.

Proof. () Given a B-PDL structure F = (U,

ZoV,0 ,P0) such that B,u,s P p, define a PDL structure

A = (U x P(V),t u u {x+,x+: x C vi, 4,p'), where
0 0 0

and p' are defined in the obvious way. It is easy to
0 0

verify that A satisfies Bl-B4, and that A,(u,s) P p.

(t-) Suppose A = (U, 0 ,r o 0 ,P0) obeys Bl-B4, and

A,u p. Define the equivalence relation E over U by

u = v iff there is a sequence dl, ...# dn , n> O. of

set and reset programs such that (u,v) c

P(d ...; dn)"n

is symmetric by B8, and is clearly reflexive and transi-

tive. Define B-PDL structure B - (U,0o-VEo-{x+,x+:xcV},

VIT 5'0) by

jim {v: uiv),

z r

38

U = {U: u C U},

To(P) = { : U C (P)),0 0

P (A) = {(, 7): (u,v) C p (A)I.

Claim. Let S f{x C V: u Op x). For all p and a,

1) A,u k p iff B,u,Su 0 p,

2) (u,v) E p(a) iff ((U,Su),(V,Sv)) C (a).

Once the claim is proved, we are finished proving theorem.

2.2. The claim is proved by simultaneous induction on

formula and program length. We need a lemma.

Lemma 2.3. If u E v and S = S then u=v.
u v

Proof. Let R be a sequence of set and reset programs

such that (u,v) c p(R). Using B3 and B4, R can be reduced

to contain at most one set or reset program per variable.

If Su=Sv , the set or reset program for x in R cannot change

the value of x. By repeated application of B2, u=v. I

Proof of Claim.

P E to-V. A,u I P t* u c (P),

C T (P) from Bl(e,f),

6 U, ,S U P.

x C V. Au x u C 00(W,

t* X C Su by definition

of Su p

BuS U x.

39

^p, pv q. Trivial.<aq_. A, u <ot>p t-* 3 v ((u, v) c p (a) A A, v p),

(.3 C v(((-d,Su) (V's)) C P (CL
U v

A B, ,sv V p)

by induction,

==)I B'US It <a>p.
u

Conversely,

B,U,Su K a>p 3v,s(((U,S u),(V's)) C ;)(O)

It is possible to find v' E v such that Sv.= s, by running

appropriate set and reset programs from v,

3 v'(((IS),(V,S v)) E pC{) A B,",S -

A,u 0 <a>p by (*)

A~xt. (U,v) c p0 (A)

S((-U'Su),(V,Su)) C £o(A) and Su=S v by B9,

U V 0

Conversely,

((U' su),(VSv)) O o(A)

Su=S v and (3u' u,v' - v)((u',v') c P(A)),

(u,v) c p(R1 ;A;R 2) for some sequences R1 ,R2

of sets and resets,

(u,v) c P(RI;R2 ;A) by B4,

S3 w(u w A (w,v) (

U-WA Sw-S V A (w,v) E P (A) by 59,

(u,v) c P (A) by Su -S v and lemma 2.3.

1 P"7

40

xt. (u'v) E p(x+)

U V A SV S u {X) by B9, B1(c),

H (u, 5))(V t

Conversely,

((u's),(v,S)) C P(xI)

Sv=S u V{x) , U =V.

By Bl(a) there is a w such that (u,w) c Px)

SSW = uU fx = S~ Aw U,

w = v by lemina 2.3,

S(u'v) E P(xt).

a u 8.Trivial.

ci;S. ()Trivial.

S3 w,s(((-U,S u),(;i,s)) c p (c) and ((w-,s),(V,S v))

choose w' B w such that S, = s. This is possible by

Bi (a-d).

3 W((U,s),(W"w,))c -(a) and (w',S .),(VSv)

S(u,w') C p(a) (wf V) C PM$ by induction,

S(w'V) £ p(ca;a)

Q*. P(O*) -U P(O)n. We show by aubinduction on n
n

that (u,v) £ P(as~ iff ((U, S U), (V, S v)) C F(ml

n=O. (u,V) E p(CO) U - V,

(U'S)(' V C 0.

41

n=l. Direct from the main induction hypothesis, for

a is shorter than q*.

n>l. (u,v) C p(,n) n-i

4 w((u,w) E r) (a) and (w,v)c p (c n-),

3 3 w(((U,S u),(w,S w)) c p(a) and ((W,SW),

(v,S v)) E p(c n -) by the subindiction

hypothesis,

((u'SU)'(vSv)) E P (C L

Conversely,

((u,S),(v,S)) E p(an)
U V
(O WS) (((U, Su) (w,s)) - P (a) and

((w s) 5,S)) pl n - l))

Choose w -E w such that S = s. Then

3 w' (l(-USu),(wSw))c p(a) and

((w,S w.),(v, Sw)) p(n -1)

S3w'((u,w) c p(a) and (w',v) c p(an-l))

by the subinduction

hypothesis,

(u,v) C p(p?)

u v and u p,

..-.I•._ ...,W .w ',,,m "-,:.,.,,

r[

42

C u = v and U,Su k p by induction,

((5,S u) , (v,S v) V C (p?)

Conversely,

((5,u's), (v,S v) E P(P?)

u = v and Su = S and u'S p,

u = v and u,S u I p by lemma 2.3,

u = v and u I p by induction

(u,v) F p(p?).

2.4. An upper bound on the complexity of B-PDL

By virtue of theorem 2.1 we already have a method of

deciding satisfiability of B-PDL formulas: translate to

PDL, and apply Fishcer and Ladner's [FL791 decision pro-

cedure for PDL. The resulting procedure requires nondeter-

ministic triple exponential time in the worst case. We

show here that we can do better by one exponential. In the

next section we prove a deterministic double exponential

time lower bound for B-PDL, indicating that further

improvement of the upper bound is limited to making it

deterministic instead of nondeterministic.

We extend Fischer and Ladner's proof of the decida-

bility of PDL to Boolean PDL. By theorem 2.2, our decision

mthod also works for B-PDL. A direct proof is also possible, follow-

ing very closely the proof for PDL.

In outline, Fischer and Ladner's proof goes as follow.: Given

a model A satisfying P, we define a new model X whose states

43

are equivalence classes of states of A under a certain

equivalence relation. • is shown to have a bounded number

of states, and to satisfy p. A decision procedure for PDL

is to guess a model of bounded size, and to test whether

it satisfies p.

To extend the method to Boolean PDL, we must only show

that X is Boolean, provided A is Boolean. In order to

make Boolean, we must strengthen the equivalence rela-

tion used by Fischer and Ladner. In so doing, we create

more equivalence classes, and so inciease the time required

to decide p.

Theorem 2.4. Let p have length n and contain m

distinct Boolean variables. Given any Structure A =

(UoZo4o 0p) satisfying p at some state u, and which is

Boolean w.r.t. to variable set V Q 0 , there is a struc-

ture = (Uj ,Zo j7,P) which satisfies p at state 'u, and
0 0 0 0

which is Boolean w.r.t. to V, and which has at most

c n states for some constant c.

Proof. Following Fischer and Ladner, we define the

closure cl(p) of a formula p to be the smallest set satis-

fying the following:

1. p C cl~p).

2. p v q E cl(p) = pq c cl(p).

3. %p c cl(p)::* p £ cl(p).

44

4. <A>p c cl(p) p C cl(p) for A c Z

5. <q?>p c cl(p) q,p C cl(p).

6. <cxv S> p C cl(p) = <a>p,<6>p,p c cl(p).

7. <a; >p E cl(p) = <U>< >p,< >p C cl(p).

8. <c*>p C cl(p) * <c><ct*>p,p C cl(p).

Fischer and Ladner show that if p has length n, then cl(p)

has at most n members. Their equivalence relation over U

is defined by u--iv iff (V q c cl(p))(u P q iff v I= q).

We strengthen that equivalence relation to

u-2 v iff (Vq c ecl(p)(u q iff v 0 q)

where ecl(p), the extended closure of p, is defined as

follows:

Let D = {dl; ... ; d : d. is either xit or x.4 or

is missing, for i=l, ... , m). D has 3m members.

ecl(p) = {<d>q: q £ cl(p), d c D}.

By definition, <X>p is p.

Define = (U,O , Z, ,P o) as follows:

S{V: u--2v};

U (U: u e U);

o (P) (U5: u f 1';
0

P (A) - ((U,V): (u,v) c P0 (A)).IL "

45

By the fact that ecl(p) has at most n3m members, we

see that U has at most 2n 3" members.

Lemma 2.5. For all q c ecl(p), A,u 1 q iff Xi

q.

Proof. Fischer and Ladner prove lemma 2.5 for all

q c cl(p) based on the weaker relation Ei" Their proof

works for any stronger equivalence relation. Lemma 2.5

is extended to ecl(p) as follows:

u I, <d; ... ; dk>q

(3 v , ... k) ((u,v I1) c po'd) 1 .. A (V k-l, Vk)

e P(dk) vk q),

3 - 1' " 1' Vk) ((-'i) C (dl) A ... A (Vk-l'vk)

p(d k) A Vk i- q)

by lemma 2.5 for cl(p),

U <d; ... ;dk> q

Conversely, suppose u i< d1 ; ... ; dk > q. Then there

must be a chain u -v I *W 1 = v 2 +... Wkl = vk -I wk

where arrows mean (v iw i) c p(d i , and Wk I q. By lemma

2.5 for cl(p), wk 0 q. Hence vk @ <dk> q. Since <dk> q

is in ecl(p), and wk_ -- vk , Wk_1 - <dk>q. Repeating that

reasoning, we see that u I <d1 ; ... ; dk>q. U

46

All that is left is to show that obeys BI-B4. We

may assume without loss of generality that every member

of 4 appears in p. Then cl(p) contains every member
0

of %. Let - be -2 "

Bi.

a) For every u,

3 v((u,v) £ p(xt)) by Bl(a) in A,

S(i,-V) C p(x t).

b) Dual to (a).

c) (U,v) e p(x+)

3 3u' - u,v" -v) ((u',v') e P(xt))

-V = - and v' x by Bl(c) in A,

- I x by lemma 2.5.

d) Dual to (c).

e) () T (xt) and 5 I P

Z 3 U - u,v'- v)((u',v') C p(xI)

and u'k P) by lemma 2.5,

= and v'I p by Bl(e) in A,

qI

47

• vi P by lemma 2.5.

f) Dual to (e).

B2. We verify part (a) only.

u k x and (U,V) c (xt)

(u' E u,v - v)((u',v') c p(xI) and

u x) by lemma 2.5,

u =V ' by B2 in A,

Su= u = v = V.

B3. We verify part (a) only. Consider a state u.

We show that (u,v) £ p(x4) iff (iv) c p(xt;x4). There

are two cases.

Case 1. (U 1 x).

U) x and (u,v) E T(x4)

(u,u) c T(xt) and (ii,5) c P(x+)

by B5 in ,

(5,V) C p(xt;x4).

Conversely,

i I x and (U,V) £ F(xt;x+)

(w((u,w) c (xt) and (w,c) T p(x4)),

w=u by B2 in ,

S (u,v) £ p(x+).

48

Case 2. (u -,\x

u Uv ^ u -,x by B2in A,

u t by lemma 2.5,

4 (U,U) E P(X4) by B5 in A,

~> (u,u) c p(x+;x4) by B3 in A,

4 Jw((u,w) c p(xt) and (w,u) c e 4)

4 W-((-U,W) c p(xf) and (iw,u) c _(M

(U,-U) c -p(x+;x+),

4(U,-v) c -P(xt;x+). by u =v.

49

For the converse we need to prove a lemma.

Lemma 2.6. Let d be either x+ or x4. If (c,) -P(d)

and (U,w) c P(d) then v = w.

Lemma 2.6 is a statement of determinism of x1 and x4

in X. We can't use B7 directly, since the proof of B7

used B3.

Proof. We show that, for every q c ecl(p), q

5i <d>q 1 w q, thus showing that v - w. By symmetry

we need only show v Ic q = - t <d>q.

() V 0 q u # <d>q because (u,v) c (d).

(C) Suppose uO<d>q. For any q in ecl(p) it is

easy to show that a formula which is equivalent to <d>q in all

Boolean nvdels is also in ecl (p). By that fact and lemma 2.5 we have

u 0 <d>q,

u 1 [d]q by determinism of d in A,

V v'((u,v') c P(d) v' q),

' V((u,v') £ P(d) 0' q) by lemma 2.5.

But there is a v" - v such that (u,v) £ P(d), so v=v q.U

To continue the proof of B3, suppose (U,V) E p(xt;x4)

and u I %,x. Then there must be a w such that (ii,w) c P(xf)

and (9,;) c (x+). By the definition of p, there must be

u I - U, wI W , W2 - w and v 2 - v such that (u1,w1) C P(xf)

and (w2 1v2) E p(x+). By B6 in A there is a w3 0 u such that

5o

(u,w3) E p(xl) and (w3 ,u) C p(x4). Similarly there is a

v 3 such that (w3,v 3) c p(x 4). Taking each known member

of P(xt) and p(x4) into its bar gives

(U,;; C P (xI), t

(u 1 ,w1) C p(xt),

(w2 ,v 2)

(w VU) C P(X),

(w 3 ,v 3) c p(x4).

By lemma 2.6 and the fact that u = u1, we get wl = 3'

By another application of lemma 2.6, using w = =

w3 we get v = v 2 = 3 = . By B5 in A, (u,v) C p(x4).

B4. We verify (a) only. Suppose c € p(A;xt).

Then there must be u' - u, w', w" E w' and v - v such

that

(u',w') e p (A),

(w''v") C p(xt).

By Bl(a) in A, we can find v'such that (w',v') c p(xt).

By determinism of xt in X, W" - = i.

(u',w') £ p(A) and (w',vA) c p(xt)

S(U',v') £ p(A;x),

(u',v') p(xt;A) by B4 in A,

S3z((u',z) £ p(xt) and (z,v') c p(A)),

3I((7i,T) c F(x f and (c,) C (A)),

F-X+-A) ,

51

S(u,T) C £(xf;A)

The converse is proved in a similar manner. Its proof is

omitted.

This concludes the proof that is Boolean, and the

proof of theorem 2.4. I

Theorem 2.7. There is an algorithm which recognizes
nm

SAT(B-PDL) and which runs in time at most cn3 on an input of

length n containing n distinct Boolean variables, for some

constant c.

Proof. A decision procedure for B-PDL can guess a

structure of size at most dn3 , where d is the constant of

theorem 2.4. It is left to the reader to verify that it is

possible to test that the structure is Boolean and that it

satisfies p in time polynomial in the number of states in

the structure. The running time of this algorithm is

dkn 3m for some k. Let c = dk .

The procedure just presented has two serious short-

comings. For one thing, it is nondeterministic. A deter-

ministic procedure based on it would have a longer running

time by an exponential. For another, it takes the worst

case time on all formulas. Pratt [Pr78] presents a tableau

method for PDL which is deterministic and which takes far

less than the worst case time on some inputs. The tableau

method constructs a model for p, as our method does, but

52

instead of blindly searching for a model, the tableau method

uses p to guide the construction of a model for p. It

appears that conditions Bl-B4 can be enforced on the model

without affecting the rest of the construction procedure.

When Pratt's method calls for the creation of a new state,

mthe extension to Boolean PDL creates 2 new states, as-

sociating a different subset of Boolean variables with

each. We do not go into detail here on the extension of

Pratt's tableau method for Boolean PDL, or attempt to prove

the method correct.

2.5 A lower bound for B-PDL

This section is devoted to proving that SAT(B-PDL)
nm

is not solvable in deterministic time cn for some

constant c > 1. The proof follows that of Fischer and Lad-

ner for PDL. An outline of the method of proof is as

follows: We show that B-PDL formulas can efficiently

simulate computations of an n2m space bounded alternating

Turing Machine, thus proving that SAT(B-PDL)is at least

as difficult as the acceptance problem for such machines.

By results of Chandra and Stockmeyer [CS76] and Kozen (Ko761

we can translate an alternating space bound into a deter-

ministic time bound one exponential larger. In order to

complete the proof, we need a result of abstract complexity

theory which amounts to a compression theorem for functions

!4

53

of several variables. As we are not aware of such a

theorem in the literature, we prove it here.

For completeness, we give a definition of an alter-

nating Turing Machine, taken from [FL79]. A one-tape ATM

is a seven-tuple M = (QL,F,b,6,q ,U) where

Q is a set of states,

L is the input alphabet,

r is the tape alphabet,

b c r - 6 is the blank symbol,

6 Q (Q x r) x (Q x r x {L,R)) is the next move

relation,

U S Q is the set of universal states,

E = Q - U is the set of existential states.

A configuration is a member of r* Q fr. A universal

configuration is a member of r* U r+ , and an existential

configuration is a member of r* P r. a = x'q'o'y' is a

next configuration of a = x q a y if for some T £ r,

either

1) (q,o,qO,T,L) E 6 and x'o = x and y' = ry,

or

2) (q,o,q,r,R) E 6 and xO - xT and O'y' = y or

(y = y' - A and o b).

A computation sequence is a sequence a , %..F (ak of

configurations, where a i+ is a next configuration of ai

for 1<ik. A trace of M is a set C of pairs (a,t), where

o is a configuration and t c N, such that

54

1) if (cct) c C and a is a universal configuration,

then for every next configuration 0 of a, there is a

t'<t for which (,t') c C;

2) if (a,t) c C and a is an existential configuration,

then there is some next configuration 0 of a and t'<t

for which 0,t) c C.

The set accepted
by M is

L(M) = {x c A*: there is a trace C of M and a

t EIN such that (q Xt) C C).

Machine M accepts x in space s if there is a trace of

M containing q0x, each of whose configurations uses at

most s tape cells.

Definition. (Fischer and Ladner) A simplified

trace is a set of configurations which is equal to the

set of first components of some trace.

Lemma 2.9. (Fischer and Ladner). If M never repeats

a configuration, then L(M) = {x c A*: there is a simplified

trace of M which contains q0 s. U

We now show that B-PDL can efficiently simulate space

bounded alternating Turing machines. Let <n,m> be a

standard encoding of the pair (n,m) in alphabet A.

Lemma 2.10. Let K v A* be accepted by an alternating

Turing machine M which accepts every <n,m> c K in space

n2 There is a mapping f from &" into B-PDL formulas such

55

that for every pair <n,m>,

i) <n,m> c K iff f(<n,m>) is satisfiable,

ii) f(<n,m>) has length 0(n+m) and contains

O(m) distinct Boolean variables,

iii) f(<n,m>) is computable in time polynomial in

n+m.

Proof. We may assume without loss of generality that

M never repeats a configuration on any computation sequence;
.n2m

for there must be some j such that j bounds the number

of configurations of M. We can construct a new machine

M' which on input <n,m> maintains a count on a new track, '1

in j-ary, of the number of moves which M has made. M'

accepts <n,m> in space n2m iff M does so. By lemma 2.8,

we need only consider simplified traces of M'.

A PDL structure represents an n2m space bounded

simplified trace as follows: A configuration is represented

as a chain of m2m states, linked by basic program A.

Each state holds rn/mi tape cells. The ith state in a

chain satisfies basic formula P) or H., respectively, if
aj

tape cell irn/m14j contains a or the head is reading cell

irn/ml+j, respectively for a c r, j = 0, ... , b/ml-1,

i = o, ..., m2M-l. Formula Q , for q c Q, holds at

the first state of the chain if the associated configura-

tion is in state q. The "next move" relation between

configurations is represented by basic program N, which

56

operates at the first state of a chain.

Before defining f(<n,m>), we define some abbreviations.

Let y1 ' "'' Yk' k = log(m2m)1 , be distinct Boolean

variables. y, ... ' Yk represent an integer y in the range

[0, m2m-l).

1. The following programs can be simulated by length

O(m) programs:

a) y = 0?
m

b) y y-i mod m2

2. cy can be simulated by a program of length

0(m + t(a)).

3. y random - (YltU yl+); ... ; (Yk u yk).

Bounded quantification is simulated by

V y = fy random],

3y = <y random>.

Formulas gl-g7 force a structure to represent a

simplified trace.

gl. Every tape cell is present.

!A*]<A-true

g2. There is exactly one state.

V(CQq ^A ~Qq 4

qcQ q q

g3. There is exactly one character per cell, and it

is well defined.

57

•n/mI -I rn/ml -I
IA' A V (PC A .'PO') A Vy A A

j=-O 0 cr o a jO ocr

([AY]P o v [AY]%P o)

94. There is exactly one head position, and it is

well defined.

rn/ ml -1 rn/mi-i
<A*> V (H A AH.) A IAt](V H D [A;A*]

j=0 3 i~j i = 3

n/m -i F/m-
A %H.) A Vy A ([AY]Hj V JAY)]Hj) •

j=0 j=0

g5. The universal states behave correctly. Let

MOVER = f H j + I if j < n/mi-l,

y # m2m-1 A<Ay+>Ho0 if j n/ml-1,

H j-1 if jO0,

MOVEL -

y # 0 A<AY-I>H rn/m 1 -1 if j 0.

rn/ml -i
Vy A A A (Oq̂ <Ay>(P3H)

j=0 -ocr qcU 0)

A <N> (MOVER A OqA <AY>P j 3q q

(q,aq',a',R)c 6

58

S/ - <N; (MOVEL A Q <AY>Pv))"

q ,O

(q,co,q ,o3,L) C 6

(Empty conjunctions are defined
to be true.)

9T. The existential states behave correctly.

Similar to g6.

Let <n,M> a1 ... Ok. The initial

configuration qo <n,m> is enforced by

rn/m -1

h = Q (VY < ink/n) A <AY>P3
0j=o rin/ y+j

Finally, define

59

f(<n,m>) h A [N*] (g A ... g 7) '

f(<n,m>) satisfies conditions (ii) and (iii)by inspec-

tion. Given a simplified trace of M on input <n,m> using

space n2m it should be clear how to construct a model which

satisfies f(<n,m>). Conversely, given A,u 0 f(<n,m>) we

can find a simplified trace for M on x. The g formulas

are sufficient to ensure that there is a configuration

associated with each state accessible from uo by N*. The

g conditions also ensure that, at least for some subset

U0 of the states U of A, the set of configurations asso-

ciated with members of U0 form a simplified trace of M

which accepts <n,m>. Details of the proof are omitted. U

A compression theorem

Theorem 2.12 is the compression theorem which we

require to finish the lower bound proof.

D e f in i t io n . (x , .. , n)
< (Y ' . , y n i f

x < Y, A...A n

Lemma 2.11. Let S r Nn, and suppose that no two

elements of S are comparable by <. Then S is finite.

Proof. We prove a stronger form.

Claim. Let O<k<n, and let S S INn be such that no

two elements are comparable, but all elements are compar-

60

able in their first k positions (i.e., if (u, ... , uk

u) and (UP ... u, ... , u') are both in S, then

either (ul, ... , u < (u.. ... , u) or (u, ... , u;)

< (u I , ... , uk)). Then S is finite.

Proof of claim. By induction on n-k.

Let x = (x., , x) c S be chosen with minimal

(xl, ..., xk). Such an element exists by the total order

assumption on the first k positions. For every u

(uI, ..., u) E S not equal to x, there must be an i,k<i<n,

for which ui<x i , for otherwise u and x would be comparable.

We count the members of S with u.= v separately for each

V~x1 . We may assume without loss of generality that

i = k+l, otherwise reordering the components. Let

= {(u , l' ., u n) C S: U. = v}.SV 1 "

The first k+l positions of S are totally ordered, andV

no two elements of Sv are comparable. Hence S is finite
n xi

by induction. Finally, ISI < 1 S which is
i=k+l v=l

finite. |

Theorem 2.12.(Fischer) Let t(n1 , ... , nk) > nI +

+ nk be a recursive, honest function (computable in time

polynomial in t). There exists a set X such that for

every deterministic Turing machine M accepting X, M runs

for tie at least t(n 1 , .,,n k) on input <nl,..., n k> for all

61

but finitely many values of ni, ..., nk. Moreover, there

is a deterministic machine M0 which accepts X, and which

takes at most cn. . .nk(nI + ... + nk)t(nl, ..., n k)c time

on input <nI , ..., nk> for some constants c and c'.

Proof. For clarity we prove theorem 2.12 for functions

of two variables. The extension to k variables is

straightforward. We use a priority argument. Let the

deterministic machines be ordered in the usual manner, and

let L(e) be the set accepted by the eth machine. We define

X by describing machine M which accepts X. On an input

which is not an ordered pair, M0 halts and does not accept.

On input <n,m>, M runs stage (i,j) for all (i,j) < (n,m)

in an order consistent with the partial order <, starting

with (0,0). Each stage produces a value and a cancellation

list. <n,m> is accepted if stage (n,m) returns value 1.

Stage (n,m). Let C = U C(i,j), where
(ij)

(i,j) < (n,m)

C(i,j) is the cancellation list of stage (i,j). Let t

t(n,m). Run each of the first n+m machines for at most

t steps on input <n,m>. Let e be the first machine to halt.

(If no such e exists, set C(n,m) = C and return 0). Let

C(n,m) - C u {e), and return 1 if and only if e does not

accept <n,m>.

62

Suppose L(e) = X. Then e is never cancelled,

Every e' < e is cancelled during stage (i,j) for only

finitely many values of i and j. To see this, let

Se' = {(i,j): e' is cancelled during stage (i,j)).

Clearly, if (i,j) c S e , then (n,m) le S e for any (n,m)

> (i,j), for e' will be in the set C computed at stage

(n,m). Hence, the elements of Se, are pairwise incompara-

ble, and Se' is finite by lemma 2.11. Let

q = max({n+m: (n,m) e U S .) u {e}).
e I <e e

For every (nm) with n+m>q, it must be the case that machine

e runs for more than t(n,m) steps on input <n,m>, otherwise

e would have been cancelled at stage (n,m). Hence e runs

for more than t(n,m) steps for all but the finitely many

values of <n,m> for which n+m < q.

Machine MO computing X runs in time at most n.m.(time

per stage) on input <n,m>. There are at most n+m machines

to simulate at each stage, and each can be simulated in

time O(t log t). The time to compute t is O(t c by the

honesty of t. Putting this together gives the time bound

for MO . I

We require an extension of the result of Chandra

and Stockmeyer [CS761 and Kozen (Ko76] relating alternating

space to deterministic time. Their theorem states that

63
. ASACEs~n) = DTME~s Cn)

ASPACE(s(n)) U PTIME(C s) for any suitably honest s.
c>O

The proof relies on a simulation of each type of machine by

the other, and is easily extended to several variables.

Theorem 2.13. Let s(nl, ..., nk) be constructable. Given any

alternating Turing machine M which runs in space s(nl, nk) n

input <nj, ..., nK>, there is a deterrnistic Turing machine M

accepting L(M) which runs in time cS (n l' nk) for same constant c.

Conversely, given deterministic machine M running in time

cS(nl' ...' nk) on input <n,, ..., nk>, there is an alternating

Turing machine M accepting L(M) which runs in space s(nI, ... nk)

on input <n,, ... ,>

We are ready to prove the lower bound for B-PDL.

Theorem 2.14. (Fischer). Let M be any machine accepting SAT

(B-PDL). Then there are constants d and d' such that for all but

finitely many values of n and m there is a formula Fn m of length

at most (n+m) containing at most m distinct Boolean variables, on

which M runs for more than 2dn2d m steps.

2m !
Proof. Let t(n,m) = 2an and t2(n,m) - cmm(nm)t(nnm) C

u*here c and c' are the onstants of theoren 2.12. There is a oonstant

b such that t2 (n,m) < Z-- . Let X be the set of theoren 2.12.

By theoren 2.13, there is an alternating machine A accepting X which

rnas in space n2P an input <n,m>. Ima 2.10 asserts the existence of

a formula Gn'm of length at most c1 (n+m) with at most

rum

64

c2m Boolean variables such that Gn, m is satisfiable iff <n,m- L X.

kMoreover, Gn' m can be found in time (n+m) . Hence, the following is a

procedure for accepting X.

1. Given <n,m>, construct G

2. Test if G is satisfiable by running M. Ifn ,m

so, accept <n,m>, else reject <n,m>.

Let T(n,m) be the time M spends to decide Gn,m* Then

kthe above procedure accepts X in time (n+m) + T(n,mn).

By choice of X, (n+m) + T(n,m) > t(n,m) for all but

finitely many values of n and m. Hence there is a constant

en2The such that T(n,m) > 2e . Let c = max(c1lc 2), and

let F = G . F has length at most n+m andn,m ,m

contains at most m Boolean variables. M decides F inn ,m

time T(n[j,[cJ) > 2 _ for some d and d,

for all sufficiently large n and m.

2.6. Multiple variable complexity bounds

In proving a lower bound for B-PDL which has nearly

the same form as our upper bound, both being functions of

n and m, we have demonstrated both the desirability and

feasibility of proving bounds which are functions of more

than just the length of the input. For most problems,

some inputs are easier than others. For some, such as

65

SAT(B-PDL), there are natural parameters of the input which

appear in tight complexity bounds. Another example of

such a problem is the not-everything problem for

extended regular expressions [St75], which is decidable in

2 cn2.2 m+l

time 2 for expressions of length n with u,

2clnj

complement symbols, as opposed to 2 when

is left unspecified.

In our compression theorem we consider only inputs

which are ordered pairs, showing that, even when inputs

are restricted to ordered pairs, there are arbitrarily hard

problems. For proving lower bounds, that is enough, and

it results in a fairly clean proof. In general, though,

a complexity bound is a function t(x) of the input, which

might have the form t(n(x)) or t(n(x),m(x)), where n and

m are simple functions of the input, such as its length.

There is a need for a theory of more general complexity

bounds that the traditional ones which depend only on the

length of the input.

2.7. Conclusion

By showing that B-PDL is decidable, we have shown that

PDL with any or all of the following extensions is

decidable, provided basic programs represent indivisible

actions: concurrency, assignment and quantification over

66

bounded integers, gotos, labeled programs with formulas

having access to labels, global invariance, "preserves,"

while and until (unnested). By the fact that B-PDL is

no more expressive than PDL, we find that all of the above

concepts can be simulated in PDL. We can view that fact

two ways. One way is to view PDL as a surprisingly rich

language. Another view is that any language which hopes to

be more powerful than PDL must be able to express more than V
the above, or to deal with basic programs which are not

indivisible.

One way to handle concurrency is by the brute force

method of trying all possible interleavings. Owicki [OG76]

presents a proof system for proving partial correctness

which permits reasoning without considering all possible

interleavings. The B-PDL simulation of concurrency also

penits a more efficient way of handling concurrency than considering

all possible interleavings, Improve efficiency results due to the

exponential gap between our decision method for B-PDL and the naive

method of translating fron B-PDL into PDL, and then deciding the

resulting PDL formula.

It would seem a reasonable criterion of any logic of

concurrent programs that it be capable of dealing with

concurrency with more finesse than can be achieved by

reducing concurrent programs to while (or PDL) programs.

For otherwise we might as well just use PDL to begin with.

This observation applies equally well to decision

67

procedures and proof systems. Any axiom system for

PDL// which ultimately relies on reducing away concurrency

by expressing it in terms of u, ; and * (such systems have

been shown to us more than once) is misguided.

It is an open problem to find a complete proof system
for B-PDL. By the remarks above, an acceptable system

would not rely on a costly elimination of Boolean variables.

We have remarked that the axioms of condition Bl cannot form

a complete axiomatization of B-PDL, when added to a system

for PDL. Any system for B-PDL must somehow express the

independence of xt and other basic programs.

Chapter 3

A General Process Logic

In this chapter we describe a logic GPL in which

variables and quantifiers are used to express properties

of a given process r. By excluding programs from the

syntax of GPL, we greatly simplify our analysis. Valid

sentences of GPL are those which every process must obey,

rather than those which some particular, potentially

very complicated program must obey. It is possible to

add programs to GPL, by adding new predicates.

GPL with programs is very similar to a version of Parikh's

Second Order Process Logic (SOPL), in which first order

quantifiers range over occurrences of states rather than

over states. In contrast to standard SOPL, which is

undecidable by Parikh [Pa78], we do not know whether GPL

is decidable. However, we give two restrictions of GPL,

each of which is decidable. The first is a semantic

restriction, in which processes are required to be closed,

in the sense that any path which can be followed arbitra-

rily long can also be followed infinitely long. In

other words, processes must exhibit bounded nondeterminism.

The second restriction of GPL is syntactic, and is shown in

69

Chapter 4 to be very nearly expressively equivalent to the

modal logic MPL. The theories of GPL and both of its

restrictions are nonelementary.

3.1. Introduction

Many statements which we wish to make about processes

concern the order of events on paths. A simple example

is global invariance: at every time instant t, P(t) holds.

For another example, suppose that P(t) represents a message

sent at time t, and Q(t) is an acknowledgement. We may

require that 1) for every time instant t, if P(t) holds,

then there is a later time t' when Q(t') holds, and 2)

for every time instant t for which Q(t) holds, there is a

previous time t' when P(t') holds. The predicate calculus

of an order immediately volunteers itself as a process

logic. The parts of such a process logic are as follows:

1. Variables are called stage variables. A stage,

or a time, is a finite path, which gives the history of

a computation. Because it is impossible for a computation

to proceed beyond a block, stage variables must range only

over legal sequences.

2. s < t, where s and t are stage variables, is a

formula. in terms of paths, <is simply the prefix

relation.

3. P(t), where PcO 0 is a basic predicate,

70

is a formula. The truth value of P(t) depends only on

the final state of t.

We generally want to make statements about the paths

in some set rT. For example, to state that P(t) is globally

invariant over 7r, we would say that, for every path h in

rT, and every stage t on h, P(t) holds. GPL must have some

means of quantifying h, and selecting t on h. There are

two obvious methods which we could use.

1. h can be specified implicitly by the semantics,

either by letting h be a part of the environment, or by

implicitly universally quantifying h before every formula.

These approaches are taken in [Pn77,Pn79,GPSS8O].

2. We can introduce variables which range over

paths, and write "t on h" explicity as t < h.

Below we show that the first approach is inadequate;

hence we choose the second. Path variables and stage

variables both range over paths, so we could get by with

a single type of variable, along with some additional

predicates such as legal (x). Harel et al. [HKP8OJ seem

convinced that a single type of variable is better than

two, and define a logic based on a single type of variable.

However, path variables and stage variables really have

different purposes. Natural restrictions are easily

expressed in terms of the two different types of variable.

Therefore we choose to define path variables separately

from stage variables.

71

1. Path variables range over paths in r. In order

to allow for the possibility of diverging or blocking,

we must allow path variables to range over infinite and

illegal paths as well as terminating paths.

2. t < h is a formula, for t a stage variable and h

a path variable. (t < s is still allowed).

Informl specificaticn of the logic GPL is almost ccrrlete.

(A complete formal specification is given in section 3.2.) There

is still one serious hole which needs filling. In the language giver.

so far, while it is possible to state that path h can make no mre

progress at stage t, as (t < h ^Vs(s<h ; s<t)), it is inpossible

to distinguish a path which is blocked at stage t from one which

is terminated at stage t. We introduce the fonmula H(t,h) which

means path h is terninated (or halted) at stage t. In terms of

paths, H is just the equality predicate. We prefer H to = for the

reasons that the parameters are of different types, and that H(t,h)

corresponds to the atcrnic fornala H of MPL.

Why path variables?

The subset TL of GPL without path variables or blocked

paths has been studied as a viable process logic by

Pnueli and Gabbay, et al. [Pn77,GPSS80] who show it capable

of expressing a number of significant properties of

processes. However, there are some important properties

of processes which appear to be expressible only by using

path variables. Some, such as the absence of deadlock,

72

depend on the existence of blocked paths, which most other

authors have not considered (see Pratt [Pr78] for an

exception). Others are more basic.

1. The fundamental property of global invariance,

GI(p) = (hew) (V t<h)p(t)

depends at least on a single universally quantified path

variable. The approach of letting the path be part of a

model is not suitable to describing processes which are

sets of paths. The alternative approach of implicitly

prefixing every formula by (V hew), and permitting no

further quantification of path variables, results in a

logic which is not closed under semantic negation, for

the negation of GI(p) begins (3 hew) ... In such a system it is pos-

sible for both p and p to fail to hold in a given model. It is out

of the question to attempt to disprove a property when w can't even

state its negation. Furthermore, an algorithm for deciding satisfia-

bility of a system which is not closed under semantic negation does

not immediately extend to deciding validity the way it does for logics

which are closed under negation.

2. There are really two different notions of the

"future" at a given stage i. One is the linear, determined

future on a given path, or the future as it will happen.

The other is the branching, undetermined future of all

paths of which T is a prefix, or the future as it might

happen. Lamport [LSO] shows that neither notion

73

of future is definable in terms of the other. Lamport ar-

gues that the linear notion of future is more appropriate

for reasoning about concurrent processes, while the branch-

ing notion is more appropriate for reasoning about sequen-

tial processes (e.g., PDL uses branching futures).

(We find neither completely adequate.) Since our system

is to treat sequential and concurrent processes uniformly,

we require both notions of future. "Throughout the future

from time t" is expressed as Vs(t<s<h =...) in the linear case,

and (V h>t)V s(t<s<h =...) in the branching case.

3. We mentioned in Chapter 1 that we would give the

writer of formulas the power to be his own oracle, making

choices when he sees fit. Path quantifiers are the

mechanism for making new choices. The absence of deadlock

statement, assuming (or simulating) an oracle which does

its best to resolve blocks without backtracking, can be

expressed in GPL by the following formula, with nested,

alternating path quantifiers.

(Vh) (Vth) (H(t,h) v (3 h>t) (3 t) (t<t'<h)

Relation of GPL to SOPL

Except for the absence of programs, GPL is very similar

to Parikh's Second Order Process Logic (SOPL) [Pa78].

Both have two kinds of variables, and a means of ordering

74

occurrences of states on a path. The major difference is

that in SOPL first order variables range over states,

while their analogs in GPL range over stages. As a

consequence of that difference, while in SOPL it is possible

to express that some state occurs twice on a given path,

the same is not true for GPL. Thus, regardless of prograns,

GPL cannot simulate SOPL. However, we know of no really

useful statement which can be made in SOPL, but not in

GPL (ignoring programs), and, since Parikh has shown that

SOPL is undecidable, we may not want the full power of

SOPL. We do not know whether GPL is decidable.

When Parikh defines the restriction SOAPL of SOPL,

he changes the meaning of first order quantifiers, letting

them range over stages rather than states. But he restricts

the use of path quantifiers to such an extent that they

can no longer be used as we have used them in our absence

of deadlock statement. In SOAPL, every time a path is

quantified, it is restarted, and bound to a new process.

In Chapter 5 we show that, when programs are added to

GPL, GPL is strict.. more expressive than SOAPL.

The logics of Pratt [Pr78], Pnueli [Pn79] and

Nishimura [N79] all restrict the use of path quantifiers

the way SOAPL does, so they can't be used as they are in

our absence of deadlock statement. Our less restrictive

use of path quantifiers is a major difference between

GPL (and MPL) and most process logics proposed to date.

" -- amai

75

3.2. Formal definition of GPL

The syntax and semantics of GPL are given below.

The truth value of a GPL formula is determined by an

environment E = (A,f), consisting of a structure

A = (U,1)jt, 0) which supplies a process r over the

set U of states and interprets the basic predicates, and

a binding f of variables to values, with f(h) c z for h

a path variable, and f(t) c pre(7) for t a stage variable.

pre(f) is the set of all finite legal prefixes of members

of w. Let P c 4 be a basic predicate, p and q be GPL
0

formulas, s and t be stage variables, and h be a path

variable.

1. P(t) c GPL; E Or P(t) iff end (f(t)) E 40(P).

2. H(t,h) c GPL; E I- H(t,h) iff f(t) =f(h).

3. a) ',p c GPL; E 0 %p iff not (E f p);

b) (pv q) £ GPL; E in pvq iff E I p or E I q.

The usual Boolean operators true, false, A, Z, etc.

are defined in terms of v and '.

4. a) (t<s) £ GPL; E k t<s iff f(t) < f(s);

b) (t<h) c GPL; E V t<h iff f(t) < f(h).

The semantic < is the prefix relation.

5. 3 t p c GPL; E I 3t p iff (rcpre())(Et P).

6. 3h p c GPL; EInh p iff (3cr))(EOhtp)

ET (Eh) is the environment which assigns f(t)-T(f(h)=),t h

with all other assignments being the same as in E. It is

76

well known that the relations <, and t=succ(t')

(successor) can be expressed in terms of <. For example,

(t = succ(t')) = t is the next stage following t',

E t' < t A VS (S<t'v t<s).

We are ready to prove some technical results about

GPL. We begin by defining a nonstandard semantics of

GPL. Nonstandard GPL has the advantage of being more

closely related to some other logics than is standard

GPL, though standard GPL more closely reflects our in-

tuition about the nature of processes and predicates.

Since we show that the satisfiable formulas are the same

under either semantics, we can interchange the two

freely.

3.3. Nonstandard GPL

In most versions of the predicate calculus, an

uninterpreted predicate P(t) is interpreted freely over

the same set as t ranges over. But in GPL, basic predi-

cates apply to stage variables, while they depend for their

truth value only on the final state of a stage. Thus

it is required that P((u,%)) E P((u,<u-u>)). A natural

extension to GPL is to permit the truth value of predi-

cates to depend on the whole stage, not just the final

state. That extension is nonstandard GPL. The logic

N-GPL is defined exactly as GPL, replacing P by in N

Nwith the exceptions that in a nonstandard structure A

77

(U,N,,N) 0:o -P (S(u)) is a more general inter-
0 0 0 0

pretation of basic predicates, and rule (1) for GPL

is replaced by

. N tN

1. P(t) E N-GPL; E Np(t) iff f(t) £ ¢0(P).

A natural question is whether the satisfiable (or

valid) formulas of GPL and N-GPL are the same. The

answer is yes.

Before proving that, we make a short digression

concerning a strengthening of GPL. Rather than letting

path variables range over 7r, and stage variables range

over pre(7), we could let path variables range over all

paths in T(U), and stage variables range over all stages

in S(U). The ranges of quantifiers can be explicitly

bounded using the special predicate h C r.

Though the stronger version of GPL is more expressive

than GPL, it is not as well behaved. The standard and

nonstandard semantics do not yield the same satisfiable

formulas in the strong version of GPL, for we can write

a formula which says that P holds for exactly one stage,

as

3 £ t VS(P (t) A (P (S) = S - t).

Q is certainly satisfiable under the nonstandard semantics,

in either GPL or the strong version of GPL. But under

the standard semantics, if P(u,o<vow>) holds, then so

.. ,

78

must P(u,o<v-w><ww>); hence Q is not satisfiable in the

standard strong version of GPL.

Nevertheless, the satisfiable formulas of GPL are

the same under the standard and nonstandard semantics.

The reason is, intuitively, that by limiting the range

of quantifiers, structures have more control over the

truth of formulas. Q is satisfiable in standard GPL;

simply let 7 be the singleton set {(u,X)).

Since the purpose of GPL is to describe the set ,

it is unnatural to permit variables to range over a

set larger than 7 and its prefixes. Therefore we study

the better behaved logic GPL.

Theorem 3.1. SAT(GPL) = SAT(N-GPL)

Proof. The inclusion SAT(GPL)& SAT(N-GPL) is trivial,
N

for 0 can assign the same truth value to all stages which
0

end on the same state.

Suppose EN = ((UN,N , ,N),f N) is a nonstandard envi-

N
ronment, and E p. We construct a standard environment

S S S S
ES (USr ,oto),f) for p as follows, letting each state

on a path remember the entire history up to its position.

uS = S(UN).

K:T (UN) 4 T(US)

For finite T,

K((u,X)) = (,)

K((u,<v-w>)) = (u,<(u,X) (u,<V*W>)>),

I}
. ,e : .o

79

K(.<u-v><w-x>) = K(P.<u-v>) • <.<uw>

*•<U-+V> <W-YX > >.

For infinite W, K1 is the limit of KT for all r<q.

S N
IT {KP: cl N

S N
0 0

SNf K o f.

S N
The states of E are the stages of EN . K replaces

IIeach state u in by the prefix of up to u. For

example,

(*) K(u,<u-v><w-x>) = (u,<(u,X) - (u,<u-v>) >

<(u,<u-w>) + (U, <u-+v><w-x>)>).

Notice that the second transition of the right hand side

of (*) begins with (u,<u-w>), not (u,<u-v>). If w=v, then

it makes no difference, and both sides of (*) are legal.

On the other hand, if wv, then both sides are illegal.

It can be shown that

K1. is legal iff K* is legal.

Other easily proved facts about K are

K2. , = end (K) for all finite 0;
x .iff " < TP2

Te 2 3 - 2

Theorem 3.1 follows immediately from the following claim: I

t ,i

80

N S
Claim. For every p, E and associated ES

EN INp iff ES p.

Proof. By induction on the length of p.

NN N NP(t). EN N P(t) t=) f N(t) C No(p) ,

N S

end (KfN (t)) C o(P) by Y2,

end (fS (t)) 0 (P) ' A

€ Es P(t).

i(t,h). EN PNI(t h) fN(t) = fN (h),

KfN t) = KfN(b) by K3,

both directions,

: fS(t) = fS (h),

ES I H(t,h).

-.p, pvq. Trivial.

NNN N)
t_<_s. ENN t<s € fN()_ fN (s),

SKf N (t) < Kf N (s) by K3,

f: fs(t) f fS(s),

ES P t<s.

t<h. Similar to t<s.

81

N N N N T N. 3tp. EN N 3tp iff (31 E pre(N))((EN)t Np).

But the standard environment associated with (EN)T is

S Kt(E)t , so by induction

N N N S KT(*)EN N 3 t (31 c pre (Tr) (ES t

If T is a finite legal prefix of some member of nN,

then by Ki and K3, ' = KT is a finite legal prefix of some
S !

member of 7 Hence

EN 0N3tp = 3 T ' pre(rS)) ((ES)t p)

E s 0 tp.

Conversely, every T I pre(T) is KT for some T in pre (7N),

so,

S S StE ' 3tp 3JV c pre(OS)) ((ES) p)t

T(3 c pre(rN)) ((ES)KfV p),
tt

EN N 3tp by (**)

3hp. Similar to 3tp, using n in place of pre(r).

3.4. A lower bound for GPL

We show that L(,(, P), the theory of the natural

numbers under the usual order < with a monadic uninter-

82

preted predicate P, is embedded in N-GPL. L(N,,P)

is nonelementary by Meyer [M74].

Syntactically, L(N,<,P) is a subset of GPL, with

integer variables corresponding to stage variables. Stages

can be made to correspond to integers, with prefix corres-

ponding to < on fN, by quantifying stage variables relative

to a particular infinite path h. The existence of such a

path in a GPL model is ensured by (3 h)(V t<h)(3 s<h)(t<s).

In nonstandard semantics, any interpretation of P by an

L(N,<,P)-model can be duplicated by a GPL model.

Further details of the embedding are left to the reader.

Theorem 3.2. The validity (equivalently the

satisfiability) problems for GPL is not elementary recur-

sive. 3

3.5. Closed GPL

Though we do not know whether GPL is decidable, we

can show that GPL over a particular class of processes, the

closed processes, is decidable. Moreover, there are some

properties which can be expressed in GPL for closed

processes, but which may not be expressible in GPL for

arbitrary processes. Hence, for some applications, closed

GPL may be more suitable than GPL.

Definition. A process v is closed if for every

ascending prefix chain T1 <T2(...2 each of whose members

83

is in pre(r), the limit of the sequence i11 2 , ... is in r.

Example 1. If r is the set of paths in a finite

branching, but possibly inf:.nite depth, tree, then by

K6nig's lemma r is closed.

Example 2. 7 = {(0,<0-0> <0-+l><ll>W): i>O} is not

closed, for (0,<O-O>) is in pre(r) for all i, but

(0,<O-O>w) is not in w.

In Chapter 1 we described an interpreter which

evaluates processes. Whenever the interpreter encounters

a block on one path, it tries another path. Suppose we

run the interpreter on the non-closed process 7 =

{(0,<O-O>i): i>O}. The interpreter would constantly

choose longer and longer paths; in fact, it would behave

as if it were following the fictitious path (0,<O->).

Of course, that path is in the closure of r. Allowing

the interpreter to change paths at will in effect closes

the process being evaluated. Thus, in closed processes,

our notion of an interpreter makes sense. In non-closed

processes we must be very careful.

The usual sequential program constructs if-then-else, while-do,

and sequencing preserve closed processes. However, as mentioned

on page 9 , a fair concurrency operator does not preserve closed

processes. Closed GPL, or C-GL, can be thoaught of as the theory of

suential processes.

Sequential prooesses are often deterministic. If those pro-

cesses are also assumd to be closed, then C-GPL can be made into

84

a logic of deterministic sequential processes, for "7 is

deterministic" can be expressed in GPL as (Vtl,t 2 ,t3 c

pre(TO)) (t 2= succ(t1) A t 3= succ(t) 1 t 2= t3)

There are satisfiable GPL formulas which are not

satisfied by any environment whose process is closed. An

example is a formula which expresses

1) r contains no infinite paths, and

2) for every stage in pre(T), there is a longer

stage in pre(r).

Clearly, no closed process can satisfy both (1) and

(2). But the process {(O,<0O> i): i >0} does satisfy

both of them. (1) and (2) are written in GPL as

1) (V h) (.9 t~h) (V s~h) (sit) ,

2) (Vt) (3 s) (t<s)

We have just proved

Theorem 3.3. SAT(C-GPL) # SAT(GPL). I

This is in contrast to SOAPL, where any satisfiable formula

is satisfied by a closed model.

C-GPL may in a sense be more expressive than GPL.

Suppose we wish to write "r must terminate," in the sense

that v can't run forever, and w can't block, assuming an

interpreter which tries all alternatives whenever a block

is encountered. In C-GPL, "n must terminate" is expressed

by the GPL equiv&lent of the following two sentences:

IIII ro ll III '1 I

85

1. 7 contains no infinite paths.

2. If path hEn blocks at stage t, then there is a

path h'nr, with t as a prefix, which does not block at

stage t.

In C-GPL, sentence (2) is (V h) (Vt<h) (H(t,h) V

(3h'>t)(3t'<h')(t<t)). Sentences (1) and (2) can of

course be written in GPL, but they no longer have the

desired meaning. For the process 7 = {(O,<00>i <ll>):i>O}

satisfies both (1) and (2), although r contains no termi-

nating paths. The reader should be able to convince

himself that (1) and (2) do express "'T must terminate"

when 7 is closed. There does not appear to be any way to

express "iT must terminate" which has the desired meaning

for all processes.

There is an algorithm for deciding satisfiability of

formulas in C-GPL. Following Parikh [Pa78], we embed

nonstandard C-GPL into SnS, the second order theory of n

successors (Rabin [R69]). SnS is recursive by Rabin, and

nonelementary by Meyer [M74].

SnS describes strings over a finite alphabet Z={Sl,...,

sn}. There are two kinds of variables: first order

variables, ranging over Z*, and second order variables,

ranging over P(Z*). In addition to variables and the

symbols 3, 11., v, there are primitive formulas for relating

variables:

1. x - Y*si , where x and y are first order variables,

86

and • is concatenation.

2. x E X, where x is first order, and X is

second order.

Theorem 3.4. SAT(N-C-GPL) is recursive.

Corollary 3.5. SAT(C-GPL) is recursive.

Proof. In the proof of theorem 3.1. if 1N is

closed, then so is S. I

Corollary 3.6. Deterministic C-GPL is

recursive.

Proof. We showed above how to express

"o is deterministic" in GPL. I

87

Proof of Theorem 3.4. The idea is to encode a non-

standard structure into set variables in SnS. The

structure A (U,w,40, 0) is coded as follows:

1. Let U f{ul,u 2, .. }. ui is coded as ¢ai$.
14

2. The finite paths of w can be coded into a single

set variable Tf. A finite legal path is represented by

a string in (€a*$) t, where t is a special symbol flagging

a terminated path. A blocked path is represented by the

sequence of states up to the first block, followed by the

special symbol b.

3. Infinite paths are coded as limits of sets of

finite paths. The set variable R . holds all finite legal1

prefixes of infinite paths in 7. Because 7 is closed,

the limits of infinite prefix chains of members of Ei

are exactly the infinite legal paths in t.

4. Let4%o = {Pl' ..., P.). For every l<i<k there

is a set variable Fi which holds o(Pi), the set of finite

1 0 1

AD-AO90 688 WASHINGTON UNIV SEATTLE DEPT OF COMPUTER SCIEN4CE F/S 12/1
DECIDABILITY AND EXPRESSIVENESS OF LOGICS OF PROCESSES. CU)
AUG 80 K R ABRAHAMSON N00014-80-C-0221

UNCLASSIFIED TR-80-08-01 M

fE -2hhhEEhmmhmhhhmhmuo
EEEEohhhhhhEEIEhiiiiiiimEm

'
21i'

- -'
2 5

11111'5 .IIIIN III1 llIH8

-- tll ill
"-

88

legal paths which satisfy P1.

Before defining the translation Q:C-GPL-SnS, we list

some useful abbreviations for SnS formulas.

1. The prefix relation x_<y on strings can be expressed

in SnS as

x<y S VX(xCXAA (zcX) (3wcX) (w=z-si) M yX).
i=1

2. x=y Zx'y^ y<x.

3. X _Y - Vx(xcX xcY).

4. singleton (X) V 'x Vy(xCX Ay X -x=y) A3X(XCX).

5. ordered (X) = x is linearly ordered under prefix

Vx Vy(xCXAyCX a (x<yvy<x)).

6. ascending (X) -'x3y(xcXC yEXA x<y).

7. infinitepath X) = X represents a single infinite

path B ordered X) A ascending (X).

8. end (x,s i) = 3 y(y=x-si.

9. If R is a regular expression over E, xcR can be

expressed in SnS. See Parikh [Pa78].

10. in w(X) - (singleton (X)A XCMf) v

(inf initepath WX A X~ i 9]1)

11. inprei(x) - x c(€a*$)+ A 3y(xy Ayc1i u Hf).

Let t , t2 , ... be the stage variables, and hI , h2

be the path variables. Associated with each ti is a first

order variable xi. The value in xi is always a member

of (Oa*$) . Associated with each hi is a set variable

Xi, which contains a single string, ending on b or x,

89

when h.i is finite, and contains all finite prefixes of

hwhen h . is infinite. Define T:C-GPL-SnS inductively

as follows:

T(P.i(t .)) x. C F..*

T(H(t.,h.))- singleton (X.) A 3Y(YCX A Y=X.).

1~ t))) j-

T (t .!<h.) =.3y(ycX.iA X.!y).
T-))- (p-

T(p-q) -T(p) vT(q).

T (3 tip) = 3 xi(inpre-r(xi) T (p))

T (3hip) = 3 Xi(inr(X) AT(p))

Let R = (Oa*$)~.Q C-GPL -o SnS is defined by

Q (p) 3 (.ff ar l Fl, ... 0 Fk)

(it Q R A 11 r R (t Ub) A 1Fc R

A ascending (H7.

A~ inprew (x)

A, inn(h.)

Claim. p E SAT(N-C-GPL) if f Q(P) is true.

Prof.We have already explained how to obtain

If* , Bitri **of Fk from a structure. All of the condi-

tions on fu Bi F V ... , F r listed in 0(p) are easily

seen to hold for the values obtained from a structure. It

90

is routine to show that those values also satisfy T(p),

provided (A,f) N p, and xi and x. are given the values

associated with f(ti) and f(h.) respectively, for all i

and j.

Conversely, the conditions on nf, Dip Fit ".. F. k

listed in 0(p) are sufficient to ensure that nf, fl' Fi,

... , Fk define a structure. The process of that structure

is clearly closed. Again, it is routine to show that

T(p) is true iff (A,f) N p, where A is the structure

defined by fI, RiV F1 ' ..., Fk , and f assigns the values

associated with xi and xj to ti and h. respectively, for

all i and j. N

Theorem 3.7. SAT(C-GPL) is not elementary recursive.

Proof. The proof of theorem 3.2 requires only

singleton processes, which are closed.

3.6. GPLM

In Chapter 4 we define a modal logic MPL, and show

that MPL is decidable. GPLM is a subset of GPL which is

expressively equivalent to MPL over MPL environments,

which are a subset of GPL, environments. Decidability of

GPL, follows from the effectiveness of the embedding of

GPLM in MPL.

While SAT(GPLM) is not elementary recursive, SAT(MPL)

is in DTIME (22) for some constant c. Hence, even though

I.'

91

?MPL and GPLM have equal expressive power, MPL seems to be

a more reasonable logic. The main purpose in studying

GPLM is to get a handle on just how powerful MPL is.

The GPLM formulas are characterized by the

following rules.

1. Every GPLM formula has only one path variable h,

though h may be repeatedly requantified.

2. Every subformula of the form 3h p of a GPLM

formula has exactly one free variable.

3. h can only be quantified relative to some stage

variable, as (.h > t)p.

4. Every stage variable s can only be quantified

beyond another stage t, and on path h, as gs(t>s>h ap).

GPLM can be regarded as an extension of Gabbay

et al.'s [GPSS80] future temporal logic (FTL). An FTL

formula describes a particular path h. Path quantifiers

are not allowed, and stage quantifiers range over h. In

addition, every stage quantifier must have the form

(3 s>t), where t is a distinguished stage variable.

GPLN permits path quantifiers in certain settings.

Wherever P(s) may appear in an FTL formula, (3h>s)p

may appear in a GPLM formula, where only a is free in

(3hs)p. Thus a means is provided of considering all

possible continuations from a given point on a path.

The restrictions made on GPLM are superficially

similar to those made by Parikh on SOAPL. However,

92

unlike SOAPL, whose every satisfiable formula, according

to Parikh, is satisfied by a closed process, GPLM contains

formulas which are satisfied only by processes which are

not closed. An example of such a formula is a modification

of the one given for GPL on page 84. In abbreviated

form it is:

1. (V h~t) (to, t~t' h)(V too, t~to <h) (t"< t'),

and

2. (V h>t) (Vto, t<t'<h) (3 h>t') ('3t", t1<t- <h)

(t'<to).

In words,

1. Every member of r is finite, i.e., there is a

maximal stage on every path.

2. For every stage of every path, there is a longer

stage, possibly of a different path.

In Chapter 5 we show that, when programs are added

to MPL, MPL can simulate SOAPL.

While closed processes are not sufficient for all

GPLM formulas, there is a different countable class of

processes which is complete for GPLM, in the sense that

every satisfiable formula is satisfied by an environment

whose process is a member of the class. That class is the

class of LL-processes, defined in Chapter 4. There it is

shown that LL-processes are complete for MPL.

GPL.A is a real restriction of GPL. Even without

using path variables, we can write a GPL formula which is

sl

93

not equivalent to any GPLm formula in all environments.

Such a formula is D E (.t 1 , t2)(t1 Pi t2). D is not

a GPLN formula, for t1 and t2 are not quantified relative

to any path. D simply states that there are two distinct

stages in pre(n). Consider the two structures A1 and A2,

both with states {0,1, 4o = 0 and o = 0. but with

?l = {(O,X)) and % {(,),(l,)}. Clearly A1 does not

satisfy D, while A2 does. In GPLM it is only possible to

compare stages on the same path. But in A1 and A2 every

path has only one prefix, namely itself, so st is always

true. Clearly, GPLM cannot distinguish A1 from A2 .

The proof of theorem 3.2 is easily modified to give

the result that GPLM is not elementary recursive.

Here is a summary of our results concerning GPLM.

GPLM is decidable but nonelementary.

GPLM is strictly less expressive than GPL.

SAT(GPLM) ' SAT(closed GPL.).

GPL,4(MPL) with programs (see Chapter 5) is more

expressive than SOAPL.

3.7. Open questions

As mentioned, we do not know whether GPL is decidable,

although it is at best nonelementary. Although there are

satisfiable GPL formulas which are not satisfiable by any

closed process, there may be another countable class of

94

processes which is complete for GPL. A candidate is the

class of LL-processes, which is at least complete for the

subset GPLM. Though we do not know whether LL-processes

are complete for GPL, neither do we know of any satis-

fiable formula which is not satisfiable by an LL-process.

Whether or not LL-processes are complete for GPL, they

form an interesting class, and a study of GPL over them

would be worthwhile.

We mentioned that we do not believe it is possible

in GPL to state that r must terminate, though we have

not proven it. Along the same lines, is it possible in

GPL to state that r is closed? That r is an LL-process?

(We conjecture "no" in both cases.)

Chapter 4

Modal Process Logic

In this chapter we define a process logic MPL, which

is based on the use of certain operators to express proper-

ties of processes, rather than on explicit quantification

of variables. We show that the expressive power of MPL

exceeds that of some other proposed process logics, and

is equal to the expressive power of GPLM. Nevertheless,

MPL has an elementary recursive decision problem. A major

portion of this chapter is spent presenting an algorithm

for deciding validity of MPL formulas, and proving that the

algorithm works. The worst case running time of the

algorithm is 0(22cn) on inputs of length n, for some con-

stant c, and is far less on many inputs. Lastly, we

derive a complete proof system for MPL from the decision

algorithm.

4.1. An introduction to modal process logic.

The process logics studied in Chapter 3 all involved

explicit variables and quantifiers. While quantifiers

are powerful, they can be difficult to deal with, both on

a formal and an intuitive level. An alternative is to make

quantifiers implicit in certain operators. For example,

rather than expressing global invariance as VtP(t),

we could create an operator "GI," and simply write GI(P).

96

A modal logic can look very much like propositional cal-

culus, with a few more operators, and can be handled in

ways reminiscent of standard methods for dealing with

propositional calculus. Proof systems for modal logic can

be elegant, not having to deal with the problems arising

from explicit variables.2

Some languages which fit into the modal process logic

class are described briefly below.

Hoare's logic [Ho69], based on the partial correctness

assertion p{Alq, was one of the first to be studied. The

partial correctness statement p{7r)q can be expressed in

GPL as (Vh)(p(t) = (Vt<h) (H(t',h)=Pq (t)) quite a long

statement of a relatively simple property. Hoare Logic has

the nice property that the statements it is designed to

handle can be expressed concisely. An obvious shortcoming

of Hoare Logic is that only partial correctness can be

expressed.

Pratt's Dynamic Logic [Pr76] extends Hoare's Logic.

Dynamic Logic is based on the operator [A). [Alp holds at

state u if p holds at every state where A could terminate,

after being started in state u. The Hoare style partial

correctness assertion p{A)q can be expressed in Dynamic

Logic as pO [Alq.

While Dynamic Logic is a termination oriented logic,

more general properties of programs can be expressed in

an augmented version of Dynamic Logic. We simply add

97

whatever new operators we desire. Pratt [Pr78] suggests,

among others, a global invariance operator (Alp, meaning A
that p holds throughout the execution of program A.

Dynamic logic illustrates a general property of

modal logics: a formula is not simply true or false,

but is true at a given state, or, in the case of logics

to follow, at a given stage on a given path.

Hoare style logic and Dynamic Logic are closely tied

to programs as syntactic entities. But other languages

have been studied which do not include programs, and so

are more like GPL. A logic of Pnueli [Pn79] has two basic

operators, G and X. Gp (generally p) holds at stage

T on pathif p (T) holds for every t < -r' < F. Xp holds

at stage T on path * if p holds for the successor of T

on '. Pnueli deals only with infinite paths, so there is

no concern over whether the successor of T exists.

Gabbay, Pnueli et. al.[GPSS80] study a logic based on the

operator until suggested by Kamp [K68], in terms of which

both G and X can be expressed. They present a proof system

for the logic of until and show that any statement which can

be made using explicit time variables and quantifiers

(or, in the GPL sense, stage variables and quantifiers) can

be expressed in the logic of until. (p until q) holds

at stage T if q holds for some r' > 7 on *, and p holds for

every r"' between i and '.

Owicki (0w781 suggests an operator while, p while q

V.

98

meaning "p holds as long as q continues to hold." In view

of the fact that p until q can be expressed in terms of

while and X, it is of little concern which basis

is chosen.

It is important to notice that the meaning of all of

the operators G, X, until and while can be expressed in

terms of stage quantifiers only. Hence any logic based

solely on them must be severely restrictive in its use of

path quantifiers. Lamport [L80], in his branching time

logic, and Abrahamson [A79], go to the other extreme,

forcing path quantifiers and stage quantifiers to appear

in pairs.

Recently, Nishimura [N79] and Harel, Kozen and

Parikh IHKP80] have extended the logic of until, introducing

operators which stand for path quantifiers relative to cer-

tain programs. These logics were unknown to us when we

developed MPL, and seem to extend the language of until

in a slightly different direction. As programs are an

integral part of those logics, we discuss them in Chapter 5.

4.2. The logic MPL

There are two types of operators in MPL, stage opera-

tors, which replace stage quantifiers, and path operators,

which replace path quantifiers. Additionally, there is

a special symbol H which replaces H(t,h). MPL can be

--.-.t-

99

regarded as a syntactic restriction of GPLM , and we give

the GPLM equivalent of each operator when defining it.

The truth value of an MPL formula depends on a particular

path and a particular stage on that path. Reflecting that

are the two free variables h and t in the GPL M equivalents

of MPL formulas.

Stage operators

Stage operators are used to express properties of a

given path. There are two primitive operators, Y and W,

the rest being defined in terms of them.

1. Yp means "if there is a successor to t or h,

then p holds there," and is equivalent to the GPLM formula

Yp --' (V s, t<s~h) ((V r, t~r~h) (r~t v s~r)D p (s)).

2. Xp - %Y'p means "there is a successor to t on h,

and p holds there."

3. pWq (p while q) means "as long as q continues to

hold beyond t on h, p continues to hold," and is equivalent

to the GPLM formula

pWq -' (Vs, t~s~h)(V r, t~r~h) (r~s -)q (r) p (s).

4. pBq E P('-p WAq) (p before q) means "p holds

at some stage t'>t, and q does not hold at any stage

before or equal to t'."

5. Gp 2 pW true (generally p) means "p holds at every

stage beyond t on h."

100

6. Fp -G\pE p B false (in the future p) means

"p holds at some stage beyond t on h."

Although, as mentioned earlier, W and Y can both be

expressed in terms of the single operator until, we find

the two operators W and Y more convenient. Until is

expressed in terms of W and Y as

p until q X(FqA PWq).

Path operators

we have already given compelling reasons for having

path quantifiers in GPL. The same reasons are equally

compelling for MPL. As a substitute for path quantifiers,

we introduce the operator D, suggested by Michael J.

Fischer [private conversation), and its dual 0. 0 univer-

sally quantifies a certain path variable h, and 0 existen-

tially quantifies h.

1. Op is equivalent to the GPLM formula (V h>t)

p(t,h).

2. Op =- %O,%p is equivalent to the GPLM formula

(h h>t) p(t, h) .

4.3. Formal semantics of MPL

A formial smiantics for ?6PL, ireeKet of GPIt4, is as followis:

Anawxw nE - (A,*,r) cmaists of asuture A- (i, r,$,0 40

a path *, ad a staget~ < W rt ,o fr(,,-pwe
A±Wis drstood. let P c 0andp,q t HPL.

101
1. P C MPL; *,T 0 P iff end (i) c 0 (P).

2. H £ MPL; 4),T P H iff S=I.

3. '%p E MPL; Ir V- p iff not (4,, T p).

4. pvq E MPL; Tr w pvq iff it p or , q.

5. Yp c MPL; ,TlcYp iff ((=T<u-v>W" and

i<u-v>legal) * ,T<u-v> p).

6. pWq c MPL; 4, pWq iff for every legal V',

-r<-r'<h , ((VT -, <T''<T'

(4,T -- q)) 4 T ,p ' p.

7. Op c MPL; , z 1p iff (V , '- 'E)(, p)

We have already shown that MPL can simulate the

operators G, X and until. Gabbay et. al. [GPSS80] describe

a number of properties which can be expressed in terms of

those operators, which we do not repeat here. MPL can

of course express all of those properties. MPL can express

properties not expressible with G, X, until and while alone.

Lamport [L80] gives a language with two operators 0 and

and gives two different sematics for 0 and ,

which he calls the "linear time" semantics and the "branch-

ing time" semantics. Lamport shows that each version can

express properties not expressible in the other version.

MPL can simulate both versions. To avoid confusion, we

rename Lamport's 0 operator BOX.

Under linear time,

BOX p E Gp,

- p Fp.

102

Under branching time,

BOXp 0 Gp

p E 3 Fp.

MPL can simulate PDL, provided programs are strongly

restricted. Only A and A* are permitted, where A is a

particular basic program. A PDL formula p is translated

to MPL formula p" by replacing

[A]q by OYq,

and [A*]q by EGq.

Given a PDL model for p which assigns to A the rela-

tion P(A), we can find an MPL model for p' whose process is

r = p(A)4", all infinite paths whose transitions are pairs

in p(A). Conversely, suppose A is an MPL model for p' with

process w. We define a PDL model with states pre(7), and

p(A) = {(x,y): x,y £ pre(r), y=succ(x)1. To make basic

formulas go through basically unchanged, we must use

nonstandard MPL, rather than standard MPL. Nonstandard MPL

is defined analogously to nonstandard GPL (see Chapter 3).

As there is a simple embedding of MPL in GPL, the nonstan-

dard-satisfiable formulas of MPL are just the standard

satisfiable formulas.

As a consequence of the embedding of PDL over A and

A* in MPL, Fischer and Ladner's [FL791 DTIME(cn) lower

bound on PDL applies to MPL as well.

The classical modal logics T, S4 and S5 are all

embedded in MPL. Fischer and Ladner remark that T, S4

103

a and S5 are embedded in PDL over A and A*. Let L be the

modal operator "for all visible worlds." By the PDL

simulation, it can be seen that in T, Lp is pAD Yp.

In S4, Lp is just DGp. For our simulation of S5, we

prefer to point out the similarity between the 0 operator

of MPL and L of S5. Let worlds correspond to members of

Tr, The value of P(x) for x E T is determined

by the value of P at the second state on x.

Thus, to translate an S5 formula to

MPL, replace L by 3 and basic formula P by XP.

MPL can express absence of deadlock. An absence of

deadlock statement must express that, whenever a path

blocks, there is an alternative path which does not block

in the immediate future. Termination is considered a

normal condition.

w cannot deadlock = DG(H v 0X true).

4.4. Relation of MPL to GPLM

Let GPLM1 be the GPLM formulas with a single free

stage variable.

GPLMI formulas can be characterized by the following

two rules.

1. If p is a TL1 formula relative to path h (every

quantifier has the form (a, tcsch)), then p is a GPLMl

formula.

104

2. If p(s) is a GPLMJ formula with only s (and

possibly h) free, then GPLMl is closed under substitution

of (3 hs)p(s) for P(s), where P is a basic predicate.

In this section we show that MPL and GPLMl can

express the same properties. Environments for GPLN

and MPL are almost the same, each consisting of a struc-

ture, a path, and a stage. Thus it makes sense to

say %, $ p, where p is a GPLM1 formula. The only

difference is that in a GPLM environment the stage need

not be a prefix of the path, which it must in an MPL

environment. We get around that by considering MPL

environments only, saying that MPL formula p and GPL

formula p' are equivalent if E P p iff E k p' for every

MPL environment E.

Theorem 4.1. There is a recursive translation T

from GPLMl formulas to MPL formulas such that for every

MPL envirunmt E and every GPLMl formula p, E O p iff

E 0 T (p). Conversely, there is a recursive translation To from IhL

105

formulas to GPLNl formulas such that for every MPL environ-

ment E and MPL formula q, E I q iff E 0 T(q).

Proof. Translation T' has already been given. To

find T, we follow Nishimura INS0], who applies the results

of Gabbay et. al. [GPSS80] to a logic similar to MPL.

Let TL be the predicate calculus of a total order < with

monadic uninterpreted predicates, and let TLI be the formu-

las of TL with at most one free variable.

Kamp (K68] shows that TL1 is expressively equivalent

to the logic L(u,s) of two operators, until and since,

defined in terms of TL as

p until q R (3s>t)(q(s) f, Vr(t<r<sp(r)),

p since q i (3 s<t)(q(s) A vr(s<r<t p(r)).

Although until can be expressed in terms of W and Y, since

cannot, for since looks into the past from time t, while W

and Y look only into the future. Gabbay et. al. show that

the logic L(u) of until only is expressively complete for

those formulas of TL which look only into the future. A

future formula of TL1 is a formula with one free variable

t, and such that every quantifier in the formula has the

form (Vs't) or]st).

Theorem 4.2. (Gabbay et al.) There is a recursive

translation F from the future formulas of TL1 to L(u)

106

such that in every model, TL1 formula p holds at time t
[1

iff F(t) holds at time t. I

The proof of theorem 4.2 can easily be modified to

handle the termination formulas H(t) in TL1 and H in L(u).

Because W and Y can simulate until, we can replace L(u)

by 0 -free MPL. Future-TL1 is just GPLMl without path

quantifiers, the path h providing the time domain. However,

in both L(u) and TL1 basic predicates are interpreted over

times, or stages, rather than over states. Thus L(u) is a

subset of nonstandard MPL, and future-TL is a subset of

nonstandard GPLMY Theorem A.2 can be modified as follows:

Theorem 4.3. There is a recursive translation

F from path-quantifier-free (pqf) GPLMlformulas to 0-free

MPL with the property that for every nonstandard structure

A - (U,w,00) every * c r, every stage T < *, and every

pqf GPL. formula p, A,*,t I-N p iff A,*,T 0N F(p). U

In order to prove theorem 4.1, we must extend F

to all of GPLMl. Translation T is simultaneously defined

and proved to satisfy theorem 4.1 inductively on the length

of p. To avoid confusion, PG denotes truth in GPLM, and

M denotes truth in MPL. The superscript N is dropped

from 0 for clarity, and A,O,i 1 p is abbreviated *,1 0 p.

-Air
I|

107

Suppose p has the form (3h>t)a. Define

T((3h>t)a) * T(a).

Then

T w (3 ht)a

~C 7)~ W T(p > -T ̂ P,' G a),

S(.7p C T(> T1 AdT IDM T(a))

by induction,

On the other hand, suppose that P= a does not begin

with (3 h>t). Let F be the translation of theorem 4.3.

Define R:GPLM1.*pqf GPLMI by letting R(q) replace every

maximal subformula b = (3h>s)a'(s) of q by a new basic

predicate Q (s). Let R':MPL.iMPL be the translation which

replaces Q by T(b). T(a) is defined as

T(a)=R'*F*R(a).

Claim. For every * and 'r *T G a iff 'P' Ic!

T(a).

Proof. Let A be the set of Q-variables used by R

on a and let A' - Mitt~ w A,f') be the extension of
0 0

A to Q-variables which assigns

P *0 (P) for P E c i

.4-(0b)At 0 {T It ~Gb)

108

The truth of b = (h>s)a'(s) does not depend on

so the choice of '0 in the definition of 0 (0b) is arbi-

trary, and 0 is well defined.

A , , - kG a

A', ,r G R(a) fran the definition of

I-,, FoR(a) by theorem 4.3.

But for every 4' and r,

A, ,T M 0 b

T C 00 (Qb

SA, ',t T , b

SA,ijr #-M T(b) by induction, for b is

a subformula of a. Hence replacing Qb by T(b) cannot change

the truth value of any formula. Thus

A,*,T G a A,,T I,'M R'GOR(a),

A, pT Pr T (a),

which proves the claim.

All that is left to proving theorem 4.1 is to note

that we have proved it for nonstandard structures, and

standard structures are a special case of nonstandard

structures.

We note that, while MPL and GPLM have the same

expressive power over MPL environments, the validity

yablu for WL is eleentary recursive, while that for G is not.

Ma translation T given above is not elementary recursive. In fact,

P is not.) That leads us to believe that ?PL may be a nore suitable

g~rAM

109

language if one is interested in verifying the validity of formulas.

Cn the other hand, there my be interesting statements which can be

made concisely in GPIM, but can only be expressed by very long WL

formulas, though we know of no such statenents.

4. 5 Decidability of MPL

This section proceeds as follows: First, we define

a structure called an LL-graph (LL stands for limited

looping). For each LL-graph, we define an associated

MPL structure. An LL-graph is a finite representation of

its associated MPL structure, the structure possibly having

both infinite paths and infinitely many paths. Not all

structures can be represented by LL-graphs, for there are

only countably many LL-graphs, and there are X 2 processes.

Nevertheless, the LL-graphs are enough for our needs.

Next, we describe the algorithm for deciding satis-

fiability of MPL formulas (or, equivalently, validity of

MPL formulas, since p is valid iff %p is not satisfiable.)

Given a satisfiable formula po' the algorithm constructs

an LL-graph L(p0), whose associated structure satisfies

Po. On the other hand, given a formula p0 which is not

satisfiable, the algorithm noticeably fails to construct

an LL-graph for p0

K Finally, we prove that the algorithm has the proper-

ties claimed for it in the preceding paragraph, and that

-. .----.--.-.. ~.. - - - - , - - - 7--- I . .. -.. - ..

110

it requires time 0(22) in the worst case.

4.5.1. LL-graphs

A common approach to establishing the decidability

of a logic is to show that every satisfiable formula is

satisfied by a model of bounded size. Then one way to

decide if a given formula is satisfiable is simply to try

every model up to a certain size. MPL structures can be

infinite in three different ways: they can have infinitely

many states, infinitely many paths, and paths of infinite

length. While it is possible to make do with finitely

many states, it is easy to write formulas which are satis-

fiable only by processes which either have infinitely many

paths or at least one infinite path. For example:

1) OGXtrue forces 7t to contain at least one infinite

path, and

2) LG * X true A 3FYfalse forces -n to contain ar-

bitrarily long paths, but no infinite paths, and so forces

v to contain infinitely many paths.

An infinite process v can be represented as the

set of paths in some finite directed graph. But there is

a problem with that approach; the set of paths in a finite

directed graph is closed, in the sense of C-GPL. But the

satisfiable formula DG OXtrue A OPYfalse mentioned

above is not satisfiable by any closed process. Neverthe-

- .~ ,- ..

less, directed graphs can be used to represent processes,

there being at least two ways to define a non-closed

process from a directed graph.

1. Define the process associated with graph G to be

the set of "fair" paths in G, where a path is fair

provided, if it passes through node v infinitely often,

then it passes through every node accessible from v infi-

nitely often. For example, the set of fair paths in the

graph

is not closed, for it does not contain the infinite path

which remains in v forever.

2. Let a directed graph have two different types of

arcs, called O-arcs and X-arcs. Define the process asso-

ciated with such a graph to be the paths which traverse

finitely many 0-arcs, but possibly infinitely many X-arcs.

It is clear that the process associated with

is not closed.

We adopt both methods for LL-graphs. While the utility

of 0-arcs will become clear, the fairness condition is

used mainly for technical reasons.

112

Definition. An LL-graph is a six-tuple

(V, A¢, Ax, VB ,)o) where

(V, AouAX) is a directed graph with vertices V,

O-arcs A and X-arcs Ax;

VB Q V is a set of potential block vertices;

0 is a finite set of basic formulas;
0

0o: 0 o0 P(V).

Additionally, an LL-graph must obey conditions LLl and

LL2. Let 0 and X be the binary relations induced by

AO and Ax respectively.

LLI. If u~v then v 0 u. (O-arcs are bidirectional).

LL2. If u 0 v then u c 0 (P) iff v C (P) for
0 0

every P c0 "

The purpose of LLI and LL2 will become clear later.

Definition. An arc-path in an LL-graph is a pair

consisting of a start vertex and a sequence of zero or

more (or infinitely many) arcs defining a connected path

in L.

Definition. A route r in an LL-graph is an arc-path

which satisfies R1-R3.

R1. r contains finitely many 0-arcs.

R2. r does not end on a vertex with an X-arc leaving

it.

R3. If r passes through vertex u infinitely often

and there is a path of zero or more X-arcs from u

113

to v, then r passes through v infinitely often,

Definition. A simple route is a route which contains

no O-arcs.

Note that there is at least one simple route starting

at any vertex, which can be found by following X-arcs as

long as they exist, using some fair system of choosing

between X-arcs.

We are now in a position to define the MPL structure

AL associated with an LL-graph L. The states of AL are

the equivalence classes of the vertices of L under the

equivalence relation 0*, the reflexive transitive closure

of . The paths of AL are obtained from

the routes in L. Given a route r,

define the path r by

1) erasing all *-arcs in r,

2) replacing each X-arc (u,v) by the transition

<uv>, where U is the equivalence class of u,

3) adding the transition <A-A> to the end of r

when F is finite and ends on a vertex in VB.

The paths in AL are the bars of the routes in L. Formally,

given L (V, A , AX? VB , 0 ,4), define A = (V,

,o ,OTo) by

(V t V: u 0* V),

V {U: u C V),

w - {r: r a route in L),

114

(fP) = {u: u C 0 (P)) .

Example. The LL-graph

0 x
U v CO x

x

with 4o(P) = {u,r) and VB = 0 represents a structure with

two states, u and w, and process 7 = {(u,<u+u><u-4w>

<w-w >W): i>0} u {(W,<W-w>w1). o(P) = {u.

4.5.2. The Decision Algorithm for MPL

Given formula P, the algorithm constructs a tableau

for Po, which is a generalization of an LL-graph. With

each node u of a tableau there are associated two sets of

formulas S and Z, which are used to guide the construc-

tion. The set VB and function for a tableau are defined

in terms of Su by

VB = {u: "'HCSu},

*0(P) = (U: P C S U.

Some of the nodes of a tableau are marked consistent, while

others are marked inconsistent. The consistent subtableau

Tc of T is obtained by deleting all inconsistent nodes and

associated arcs from T. The tableau T(Po) constructed for

pO is designed to have the following property. Let A

be the structure associated with Tc (Po), u be any node in

c

7-

115

T (po),q be any formula in Z a Su, a be any finite

arc-path in T (P) ending on u, and r be any simple
0

route starting at u. Then A, aur a q. The bar of
u U,

au is defined as for routes, with the exception that

<0-0> is not added to its end. By constructing T(po)

so that Z contains p0 for some node v, we see that, if

v is consistent, then A, avrV , av 0 P0 , where av = (v,A)

and rv is a simple route starting at v, and hence p0 is

satisfiable. Conversely, we show that if p0 is satis-

fiable, then Z contains p0 for some consistent node v.

The method of constructing T(p) is similar to other
0

tableau methods, such as that for classical modal logic

[HC68], and PDL [Pr78]. We begin by setting T to the

tableau consisting of a single node vo , with S = ZV

{p 1. T does not yet obey the properties claimed

for T(p). In order to make T obey the claims,

we perform transformations on T. Each transformation is

intended to make one formula in one node hold for simple

routes starting at that node, and accomplishes that goal

either by adding new formulas or creating new nodes. For

example, if Su contains 'w(pvq), a transformation replaces

PU(pvq) by vp and Puq, in hope that future transformations

will cause both up and Nq to be satisfied. If Su contains

I

116

pv q, then a transformation causes u to split into two

nodes u' and u"*, one containing p, the other q.

Transformations try to make both u' and u" satisfy the

claims, but need only succeed for one of them. Consistent

nodes are ones on which transformations succeed. if S

contains %,Yp, a transformation creates a new node v,

draws an X-arc from u to v, and places npp (among other

formulas) in S . If some alternative for v is consistent,

then u is consistent. The hardest formulas to satisfy are

the box formulas. The transformations first must reduce

them to a standard form, which is a 0 followed by a

disjunction of one or more formulas, each starting either

with Y or ",Y. There are suitable transformations for

formulas in standard form. "'.0 formulas are also re-

duced to standard form in order to avoid splitting trans-

formations (such as that for p vq) from applying to nodes

with *-arcs pointing to them, the reasoning being that

if Scontains (Pv %P), one alternative of u contains P,

while the other contains "'-P. But condition LL2 requires

that nodes linked by *-arcs satisfy exactly the same basic

formulas. Splitting before drawing any O-arcs avoids that

problem.

Transformations are applied until no more can be

applied. At that point, consistency rules are invoked,

causing some node's to be marked inconsistent. When no

more consistency rules apply, the construction is finished,

117

and T = T(P0).

Transformations alter both S and Z sets. Set Zu

is a "history" set, containing every formula which was

ever in Su . In particular, Su U Zu . Some notation,

similar to Pratt's [Pr78], will make transformations

easier to write.

1. p-q, r means "if Su contains p, then set Su

(S - {pl) u {q,r}, and Z = Z u {q,r}."

2. p-q or r splits a node into two new nodes.

If Su contains p, replace u by two new vertices u' and u",

with

Su . = (Su -{Pl) V {qW, z u z uUq.,

S u . = (Su - {p}) u {r}, = zu v {r}.

If any X-arcs used to point to u, duplicate them for u'

and u'A as shown below.

x x x

-p. ..#q-.--,

Due to the order in which transformations apply, no vertex

with a *-arc pointing to it is ever split.

3. 0(avp) * ... In general, 0 is followed by a

disjunction of several terms, and only one of the terms is

transformed. The disjunction av p is thought of as a set

of formulas, one of whose members is p. Transformations

118

very similar to those for formulas outside the scope of

D apply to those inside the scope of 0l.

4. p iO A is an abbreviation for two rules, one for

p, the other for 'p

p 0 q,r represents (p - q,r) and (,,,p - -q or nur).

p so q or r represents (p - q or r) and 0,p -* ,.)

Transformation Rules

The transformation rules are listed below. They are

broken into five groups, transformations in group one having

the highest priority, group two lower, etc. We assume that

P 0 is written using only basic formulas and the symbols

Group one

TR1. %,^-p 4 p.

TR2. p q 0p or q.

TR3. pWq - %'q or (p, Y(pWq)).

TR4. %~(pWq) - (q, 11-p) or (q, p, ̂ -Y(pWq)).

Group two

TR5. O3(a v %,%,p) 0 D(a vp) .

TR6. 0D(a v I'- (p vq)) 0 (a vp) , D(a v

TR7. DO(a vpWq) -*3(a v q vp) , D(a vq vY (pWj)

Trq. 13(a~ v .(pWq)) 0 (a vq) , D (a v %p v -Y (pWq))

Group three

TR9. 0D(a v P) 10 Da or P for PcE0

_ _6.

119

TRI0. 0 (av "P) D Ca or P for P 0

TRIl. E3(a,.Op) D Da or Op.

TRI2. O(a (3 p) i 3a or ^-3p.

(If a is empty, Da is false.)

Group five Rules for drawing X- and 0-arcs.

TRl4. a) If Su contains either %Yp or [(Yplv...

V'YPk) , create a new vertex v, and draw an X-arc from u

to V.

b) If part (a) results in a new vertex v,

set

Sv = Zv = {p: Yp C Su }

{(%p: -'Yp C Su

V{ (p .kv . V v ... v "qk)

0(P 1v ... v Pk v 'vql v . . . V ̂ qm) :

3(YPl v. Ypk v 1%Yql1 v ... v nYqm)

C S u .

TR15. If Su contains %D(Ypl v ... v YPk v -Yql

v ... V %,Yqm) and there is no node v such that u O*v and Sv

contains 1'"Ypl, %YPk' Yq1 ' ... , Yqm then create a new

node v, draw a bidirectional O-arc between u and v, and

set

S V, ZV - (f'#YPlf *** "'' Yk' Yq, ... , Yqm)

u{P: P S u and P c 0o)

u(%P: uP c Su and P c t 0

U{Op: Op E u}).

TRI6. Add %D formulas to S and Z sets as required

I

120

to make the following true.

a) If YPI, .'. YPk, Yql' "... FYqm are

all of the Y and %Y formulas in Su, and u 0* v for some v,

then S v contains % 0 (-.Ypl v ... 'YPk v Yql v ... v YqM).

b) If u O*v, then Su and Sv contain the

exact same -.O formulas.

(It is easy to show that TR16 cannot cause any other

transformations to apply, or affect any consistency rules.

Hence the algorithm works just as well without TR16.

However, the correctness proof is simplified by having the

redundant formulas which TR16 adds.)

A quick inspection of TR3 and TR14 shows that the

transformations given so far can continue to create new

vertices forever. However, after some time, the new

vertices will be identical to previously constructed

vertices. The filtration rule merges similar vertices.

Filtration should be performed before group five rules,

to prevent the creation of new nodes.

Group four (Filtration.)

TR13. If Su = Sv up to associativity and commu-

tativity of v, delete u, and send any arcs which point

to u to v instead. Set Z: = Zv u Zu.

Consistency rules

i*

(V

121

Cl. If Zu contains both p and ^-p, then u is

inconsistent.

C2. If S contains H and uXv for some v, then u is

inconsistent.

C3. If u 0 v and v is inconsistent, then u is

inconsistent.

C4. If there is some v such that uXv and every such

v is inconsistent, then u is inconsistent.

C5. If Z contains n-(pWq) and for every consistent

node v which is reachable from u by a path of zero or more

X-arcs, Zv contains p, then u is inconsistent.

The order in which the consistency rules apply makes

no difference. It can be shown that a weaker version of

Cl, which only looks for a basic formula and its negation,

is sufficient. The present version simplifies proofs.

Example 1. The tableau constructed for XP A 0 X^P

(E ('6Y%,P v O',YP)) is drawn below. We use X and 0 freely

to abbreviate %,Y,% and 6 0 '.

vo: XP, 0XP * oXP X X

2 v: V3

All of the nodes are consistent. The sets listed are the

S sets, which in this simple example equal the Z sets at

122

every node. The formula *XP was added to v and vI by
0

TR16. Notice that, if r is the simple route

(v1'(vV 2)x)' so that rv , = (v
l p'<v-4v 2 >), then a-r

iP XP for any a ending on v1 . On the other hand, if r is

the non-simple route (v1 , (v I , v 3) 0 (v 3 , v 4)), so that

r = (vi <v1-V 4 >), then ar, a does not satisfy XP. This

example illustrates a second function of 0-arcs, in

addition to limiting loop traversals. For a formula such

as Op, A... A Op n to hold at a given state, there must in

general be several different paths through that state.

0-arcs provide a means of splitting a state into n

different nodes, in such a way that node i is responsible

for creating a path which satisfies p".

Example 2. The consistent subtableau constructed for

G(FP A FP) is drawn below.

[
[XFP ,

pXF
/ %,P , xYG(FP F P)J

P, XF6P, YG(FPAF--P) P, XFP, YG(FPAF^-P)

It is clear that every fair route satisfies G(FPAFP),

although some unfair routes, such as the one which remains

in the lower left-hand corner forever, do not. This example

*,

* ,.. *

123

shows that the fairness condition is required for this

particular algorithm to work, though not that fairness is

required for there to be an LL-graph satisfying every

formula, for the graph whose only route alternates between

two nodes, one containing P and the other nUP, also satis-

fies G(FPA F%P). We know of no formula which seems to

require fairness.

Example 2 reveals that this algorithm sometimes

constructs non-closed processes to satisfy formulas which

are satisfiable by closed processes. Thus the algorithm

cannot be used directly to decide satisfiability of MPL

formulas over closed processes. We do not know of

any better means of deciding closed MPL than by translating

to C-GPL, and testing there. V

4.5.3. Correctness of the decision algorithm

Let T(p) be the tableau constructed for p let
0 0

T (po) be the consistent subtableau of T(p), and let
c 0 0

A be the associated structure. We begin by bounding

the time spent constructing T(p0).

Theorem 4.4. If p0 has length n, then there are

at most 225n nodes in T(p0) for n > 2.

Proof. Let S(po) be the set of formulas of the

forms

124

a) p, b) -p,

c) Yp, d) ,.Yp,

where p is a subformula of po" A simple induction shows

that S(p) has at most 4n members. It is not difficult

to show that every formula in Z for every v has one of

the forms

1) q1 ,

2) 0 (q v ... v q

3) (ql1v ... v qk) ,

where q,, ...' qk are members of S(p). Thus there are

no more than 4n + 2.24n different formulas written in

nodes, up to associativity and commutativity of v.

By the filtration rule, no two distinct vertices can

contain the exact same formulas, so there are at most

4n+l 2 5n2 < 2 different vertices.

Theorem 4.5. SAT(MPL) is in DTIME (2 2 cn) for

some constant c.

Proof. We leave it to the reader that T(po) can

be constructed in time polynomial in the number of

nodes in T(p0) in the worst case. For example, no more

than 2
5n transformations can apply to any given node,

and all of the formulas in a node have length at most cn

for some c. I

125

The best lower bound we know of on the complexity of

MPL is the single exponential time bound which follows

from MPL's ability to efficiently simulate PDL over the

programs A and A*. Fischer and Ladner [FL791 prove that

PDL over A and A* is not in DTIME(c n) for some c>l.

Theorem 4.6. The satisfiability problem for MPL

is not in DTIME(cn) for some c>l. |

In section 4.6, we present a proof system A for MPL.

Our goal is to prove the following theorem.

Theorem 4.7. Let v be a node in T(p), and let

Pv be the conjunction of all formulas in Sv . The follow-

ing three statements are equivalent.

1. %Pv is valid.

2. Pvp is provable in system A.

3. v is inconsistent.

The remainder of this section is devoted to proving

(1) = (3). (3) = (2) and (2) = (i) are deferred to section

4.6, where system A is defined.

First we show that correctness of the decision

method is a corollary of theorem 4.7. Assume without

loss of generality that p0 has the form Xp. (If p0 has

any other form, we can test Xpo, which is valid iff po

is valid.) Then vO is never changed, and pv - 0
0

Lw 4'40(144

126

Corollary 4.8. p0 is satisfiable iff v0 is

consistent. I

Before proving (1) = (3), we prove four small lemmas.

Lemma 4.9. In the completed tableau T(po), if
0

P E (,o(P, Op,' .Op respectively), is in Su and u = v

then P(%P, Op,% p respectively) is in S V

Proof. Lemma 4.9 for PLOp follows from the action V

of TRI6. For P, 1%P and Op it follows from the fact that

TR15 copies basic formulas, their negations, and box

formulas across O-arcs, and no new box formulas can be

created after TRl5 applies.

Lemma 4.10. T (P) is an LL-graph.
c o

Proof. We must verify that Tc(p) satisfies LLl

and LL2. LLl holds because TR15 draws bidirectional

-arcs. If u 0 v, then

u C *0 (P) C PCs by definition of for

T,

4 P C S by lemma 4.9,
v v

which verifies LL2.

Lemma 4.11. Let v be a consistent node, and let p

be the conjunction of all formulas in Sv . Then for every

. . _ _ ._

127

formula q in Zv, Pzq is valid.

Proof. Formally, the proof proceeds by induction

on the number of transformations which have applied,

showing that lemma 4.11 holds at every intermediate

stage in the construction of T(p), as well as in T(po).
00

Informally, we only need to notice that each transforma-

tion TRI-TRI2 replaces a formula by an equivalent or

stronger formula. For example, TR2 deletes pv q from

Sv , but adds either p or q, each of which implies pv q.

TR14-TR16 do not remove any formulas from S v . TR13

merges v with v', creating a new node v-, with Zv.- =

Zv' Z v and S v = SV = S V , which clearly preserves

lemma 4.11.

Lemma 4.12.

a) If Z contains Yp ('%Yp) and uXw, then Zw contains

p (up).

b) If Z contains D(YP 1 v...v Ypk
v %Yql v ... V

%Yqm) and uXw, then Zw contains L (P1 v...w pk V ql V

V..vqm) and (PI v ... v Pkvq 1 v ... v ,qM).

Proof. TR14 places the desired formula in a node

which is an ancestor of w in the construction. The history

set Zw retains the formula. U

Theorem 4.13. Let A be the structure associated

. ..I

128

with T (po). Let v be a consistent node in T(po), av

be an arc-path in Tc(Po) ending on v, and rv be a simple

route in Tc (p0) starting at v. Then A, av~,.rtv av p

for every p in Z

Corollary 4.14. ((1) = (3)). If v is consistent,

then p is satisfiable.

Proof. There is a simple route r beginning at any

given node in T (Po), which can be found by following

X-arcs as long as they exist, using some fair method of

choosing between X-arcs. By theorem 4.13, A, r,

A p, which implies that pv is satisfiable.
PEZv

Proof of theorem 4.13. The proof is by induction

on the order C over formulas which makes p < q if either

p has fewer W symbols than q, or p and q have the same

number of W symbols, and p is shorter than q. If p A q,

we say that p is smaller than q. Each possible form of

p is considered below. We generally write v)q for
V

av--'-rv, i q for brevity. We say that v contains p when p

Sz.
V

P. P Z P C Sv because P is not reduced,

V C 0 (P) by definition of 0 (P),

4vC 0(P) by LL2,
0i

€: v P

129

'U.P. A. P C z (C zv by Cl,

(r v P) by the proof for P,

H. H c Z 3 ~u (vx u) by C2,

and nH jeS by Cl, since H is not

reduced,

'\-H. suppose %IH C Z .Then either there is a consis-

tent u such that vXu, or rv = (v,X). In the former case

Fr)= nH by R2, which prohibits r~ from ending on v.

When r~ (v,%~), r (V, <A-A>), and r Iu H.

130

",^-p, p v q, "(p v q). Trivial, using TRI, TR2.

En. Suppose pWq is in Zv . Let the nodes on route

rv be, in order, v=v1 , v2 , .. Because rv is simple, there

is an X-arc from vi to vi+ for all i > 1, up to the end

of rv , if rv is finite. By TR3, any node vi containing

pWq also contains either ^.q or both p and Y(pWq). If

the latter is the case, then by lemma 4.12, vi+ 1 must

also contain pWq, provided vi+1 exists. By repeatedly

applying TR3 and lemma 4.12, we see that either Vl, ...

Vk all contain both p and Y(pWq) for some k > 0, and

Vk+ 1 contains nq, or every vi contains both p and Y(pWq).

Let ri be the suffix of rv which starts at vi , and av .rv

= ai-r i . If every vi contains p, then by induction
airi , ai) p for all i, which forces av.rv , av I pWq.

If, on the other hand, v.,..., vk contain p and Vk+ 1

contains '-q, then again by induction av-r a, av a pWq.

^.(pWq). Suppose v contains"<pWq). By repeated

application of TR 4 and lemma 4.12, as was done for pWq,

we see that either every node on rv contains q and p and

'%,Y(pWq), or every node up to some point contains q and p

and ,.Y(pWq), and the next node contains q and %p. In the

latter case, by induction and the meaning of pWq, r

"(pWq). In the former case rv must be infinite, for by

R2 rv cannot end on a node with an X-arc leaving it.

Since every node on rv contains '%Y(pWq), TRA4 draws an

X-arc coming out of every node on r v and by consistency

131

rule C4, every node on rv (all of which must be consistent)

retains at least one of its X-arcs in Tc . Route rv must

pass through some node w infinitely often, so by the fair-

ness of rv , r v passes through node u infinitely often for

every u which is reachable from w by a path of X-arcs.

But every node on rv contains both p and ,(pWq). Hence

node w is inconsistent by C5, violating the fact that r

is a route in Tc -

Yp. Suppose v is consistent and contains Yp. By

lemma 4.12, any node u reachable from v by a single X-arc

contains p. Suppose rv = (v,U)xru. By induction, ru Pp,

and so Yp.

Yp. If v contains Yp, then TRl4(a) draws an X-arc

coming out of v. By C4, there must remain an X-arc

coming out of v in Tc. The rest is very similar to Yp.

"i Dp. Suppose v is consistent and contains ^op.

By TR15, there is a u in T such that v 0 u, and by consis-

tency rule C3, u must be consistent. TR15 places formulas

ql ...' q n in p, with q A A ... A qk np, and each qi

is smaller than %p. If ru is a simple route starting at u,

then by induction r a qi for all i, so F 'p. Hence

there is a path 7- in A starting at u = which satisfies

"'p, which implies apr, a - " [3 p for any r, in particular

for rv .

There is a special problem with the box formulas.

Several different transformations may apply to

- '

132

. (a v ... v an), although, in any actual construction,

only one is chosen. For that reason, it is not technically

correct to say, for instance, that if D(a v vn-p) is in

Zv , then 0 (a v p) is in Zv, for a may have been reduced

first. But some disjunct ai of (a ... v a n) is re-

duced in v, and we may consider O(al v ... v an) to be

of the form O(b v ai). Thus, when proving theorem

4.13 for Q(a v p), we may assume that p is immediately

reduced in v.

O(a v '"p), O(a v ^(p vq)). Trivial inductions.

0(aw P), C(a v ",P), O(a v Op), 0D(a v I, 0 p).

Each of these is routine, by the group three transforma-

tions and the valid formulas

1) tI(a v P) - Da v P,

2) D(a v A.P) B: OavP,

3) O(a v tp) E 1avDp,

4) 0(a v ''0p) E 0 av Dp.

Formulas (1) - (4) can be recognized as valid by realizing

that formulas P, 1%,P, Op and % P p are independent of the

variable h quantified by 3.

We have considered O(a v b) for every form of b

except pWq, %(pWq), Yp and ',Yp. 0(a v pWq) and

1 (a v ̂ -(pWq)) are hardest to handle, and are done last.

After TRl-TR12 have been exhaustively applied to v, the

only remaining 3 formulas in Sv have the form

C(¥PI V ... V YPk V %¥ql v ... v ¥'Yqm) for k,m > 0.

LI p

. . .. , . . , , .t L _ _ .

133

0 (Yplv.v Ypk v ,.Yq v ~v -Yqm). Let b

YP ~ %~q . kYm and c =P V .V Pk

-qV .v V V Using the valid equivalences

1) Y (p vq) EYpv Yq BYp,/Xq, 1
2) X(p vq) Xp vXq,

we can show that

1) b Yc if k > 0,0

2) b Xc if k = 0.

Case 1. Assume k > 0, and Ob E c (so 0Ob C S

since TRl-TRl2 do not alter O3b). We must show that

a rv , a P b, that is, for every route r (not necessarily
v V

simple) starting at v, avr, gi ' b. Let r consist of a
v

sequence d of zero or more *-arcs going from v to u, f ol lowed

by an X-arc from u to w, followed by r', i.e., r=

d-(u,w) *rA. Then

c SUby lemma 4.9,

~DC C Z w by lemma 4.12,

av d - (u,w) x r w a v d*(-u,w)x I' c, by induction,

~ jav.d.(u,w)-- 0 c for every gs.'aved -(uw %7F

arF, d(~T- c since F~d*(uTwF

V V b.-

134

Case 2. Assume k = 0 and Db c Sv . By lemma 4.9,

Qb is in Su for every V = . When TR14 sees Gb

O (%Yql v ... v \Yqm) in Su, it draws an X-arc coming

out of u. If v is consistent, then by C3 u is consistent,

and by C4 there must be an X-arc leaving u in Tc . Thus

no route can end on any u equivalent to v, so for every

route r starting at v, r 0 X true. It remains to show

that r k Yc, since b E Xc E X true A Yc. That was done

in case 1.

C (a v pWg). We need to know something about the

formulas to which O(a v pWq) is ultimately reduced.

Lemma 4.15. Suppose O(a 1 v ... v an v Y(pWq))

is in Zv. Then there are formulas q,, ... , q. in Sv

such that ql A ... A q1 D 0 (a v .. . v a v Y(pWq))

is valid, and every qi either has no more W symbols than

some aj, or is (Yb1 v ... v Yb ... v %Ycm v

Y(pWq)) for some b ... bk, Cl, ... , cm, k, m_> 0, where

each bi and ci is no larger than some a.

Proof. Group two transformations apply to

V (a v ... v an v Y(pWq)) to produce several formulas,

3(d1 v ... v d iv Y(pWq)) for i- 1, ... , t, and it

is easy to show that each d i is either some ak which was not

reduced, or is smaller than some ak , or is Ye or %Ye, where

e is no larger than some ak. Group three transformations

pull each d which does not begin with Y or %Y outside of

_ _ _ _ _ _ _ _ _

135

the box, and further transformations on d., cannot produce

a formula with more W symbols than d. (although they can

produce longer formulas). Thus the size constraints of

lemma 4.15 are satisfied. By lemma 4.11 and the fact that

each formula reduces independently of the others by TRI-

TR12, if 0 (a1 v... v an v Y(pWq)) reduces to ql' '',

q then ql Â ...Aq£ C (a1 v.. . v an v Y(pWq)) is valid.

Suppose O(a , pWq) c Zv s

D(a v pWq) c Z v

0 (a v q v,p) c Z by TR7,

rv 1- O(av'qv p) by induction,

for O(a v ,q v p) has fewer W's than D(av pWq).

C3(av pWq) c Z

O(a v.qv Y(pWq)) c Zv by TR7

q 1, ... , k C Sv ,

where ql, ... q are the formulas of lemma 4.12. Those

qi which have no more W symbols than av %q are satisfied

by r v by induction. All that is left is to show that, if

q 0 k(YbI v...v Ybk V.VYc m), then?1L q.

For then

1V M(a v '.q v P) A A e'. A

7-v D(av --qvp) A (LavqvY(pWq)) by the fact

that qIA9oA qI Z (av.qv Y(pWq)) Is valid,

F IN D(a v pWq) by semantic implication.

v*.

136

Equivalently, we must show that for every route r (not

necessarily simplt-) starting at v, avr, a O' Yb V
v v 1

YbkV %Yc1 v ... v lYcm VY(pWq).

Claim. Suppose, by induction, that theorem 4.13

holds for all formulas smaller than O(a v pWq). Let f =

(Yd1 v ... v Yd s v %Ye I .. v ,Yet) and g = v ... v d s

\eI v ... v \et), where each d. and e. is no larger than

either a or q, and suppose that Su contains D(fv Y(pWq)).
Then for every route r starting at u, aur, -u Irf vY(pWq).

Lemma 4.15 asserts that each qi = D(fiv Y(pWq))

satisfies the conditions of the claim. Hence, by the claim,

auri au fiv Y(pWq) for every r starting at u, which is

what we want.

Proof of the claim. The proof is by subinduction on

the order over routes which makes rI < r2 iff either r 1

has fewer *-arcs than r2, or r1 and r2 have the same

positive number of O-arcs, and r has fewer X-arcs before

its first O-arc than r2. Since routes can have only

finitely many *-arcs, the induction covers all routes.

Case 1. r has no *-arcs, i.e., r is simple. If

r has no arcs at all, then F trivially satisfies Y(pWq),

and the claim holds. Suppose r = (u,w) r'. By lemma 4.12,

zw contains gv pWq. TR2 selects one of d1 , ... , ds ,

fuel, ... , "t, pWq to be in Zw . The selected formula must

be smaller than D(av pWq), so, by the main induction

hypothesis, F must satisfy it, since ro is simple. Hence

137

a (uw) ar a(u g v pWq,

u U Y (g v pWq),

Case 2. r = (u,w)0 ' r begins with a 0-arc.

Let a w u "w)0 '

C3(fv Y(pWq)) c S
u

C D(f vY(pWq)I c S w by lemma 4.9,

aW • r4 , a f v Y(pWq) by the subinduction
w w

hypothesis

a r , I- f v Y(pWq) since bar erases

0-arcs.

Case 3. r = (u,w) xr, and r' contains a 0-arc.

0(fWY(pWq)) Su

S%(g vpWq) c Z by lemma 4.12,

SD(gv ^qv p) c Z by TR7

aw~ rw aw E O(g v -qv p) by the main induction

hypothesis,

aw'-- , g v %q v p by semantic implication.w w
Also,

D(fvY(pWq) I Su

0 (gvpWq) £ Z w by lemma 4.12,

M (gv'q vY pWq) £ Zw by TR7,

%- i7r-, a W vfqvY pWq) by lemma 4.15 and

the subinduction hypo-

thesis.

138

By the validity of (gv qv p)A (g v'qv Y(pWq)) D g vpWq,

we have

awr, aw gv pWq

aur , a (gv pWq)

aur, a f v Y(pWq) K

by distributing Y over v. K

(avlpWq)). The proof for this case is very h
similar to that for D(av pWq). The main difference is

that, instead of Y(pWq), we have ^.Y(pWq), and must take

into account in lemma 4.15 the possibility that k might

be zero. The tedious proof is omitted.

4.6. Proof and Completeness

As is the case with other decision algorithms based

139

on tableaux, a complete proof system for MPL can be de-

rived from the tableau method for MPL. The axioms and

inference rules of such a system are listed below as system

A.

System A

Axioms

Al. All substitution instances of propositional

calculus tautologies.

A2. Op P.

A3. 0 (p q) ~ Op --'Oq) .

A4. Op = 0p.

A5. 0 for P c)0

A6. H n Y false.

A7. EDYp Y YDp.

AB. Yp (X true --' Xp).

A9. Y(p~ q) (Yp D Yq).

A10. Gp Z Yp.

A13. Gp z pWg.

A14. pWq q = (p A Y(pWq)).

Rules of inference

PA1. p, p = q I-q (Modus Ponens).

PA2. p I- 13p.

PA3. p I-Gp.

140

Verification of soundness of system A is left to the

reader. The only axiom which is not obviously valid is

A7. Moving the Y in front of the 0 effectively decreases

the range over which 0 quantifies to those paths which

make the same next transition as the current path.

Before proving system A complete, we list a few useful

theorems of system A. We say that p is provable by PC from

ql ...'' qn if p follows from q,, ... , q. and instances

of Al by Modus Ponens.

The reader familiar with the classical modal logic

S5 will recognize axioms AI-A4, together with proof

rules PAl and PA2, as a complete proof system for S5.

It follows that every substitution instance of an S5

theorem, where 0 and 0 are taken to be the S5 modali-

ties, is an MPL theorem. Due to axiom A5, the converse i.:

not true; that is, there are MPL theorems involving only

0, 0, ^. and propositional variables which are not S5

theorems. MPL is prevented from collapsing into proposi-

tional calculus only by the operators Y and W. Theorems

TAI, TA2 and TA3 are all proved in [HC68] for S5.

Theorem TAl.

a) 1- 130p E 0 p, b) I-(3*p E opt

C) 0- 0P D3P, d) *-'Op E p.

Theorem TA2. I- E(p q) E Op Dq,

141

Theorem TA3. For P e 0 , p any formula,

a) D O(av P) E Da v P,

b) C1 O(a v P) E 0a v P,

c) F D(av p) E Oa v p,

d) - D(av<0p) E Oa v p.

Theorem TA4.

a) F Y(pvq) E YpvYq,

b) I Y(pvq) E YpvXq,

c) I X(pv q) - Xp vXq,

d) I Y(pzq) = (Xp DXq),

e) I- Y(p Aq) E Yp AYq,

f) F X(pAq) E XpAYq,

g) f X(pAq) E XpAXq,

h) F Xp - Yp ^X true,

i) - Xnp - 'Yp.

Proof. Let PA4 be the derived inference rule

pJ-Yp (from PA3, AlO and PAl).

1) (Yp AX true) =Xp A8, PC;

2) X p z vyp definition of Xp;

3) Xp %,(X true'zX%p) (2), A8, PC;

4) Xp z Xtrue A^X%p (3), PC;

5) 'X,.p -Y'p definition of X, PC;

6) Y('"p E p) (5), Al, PA4;

7) Y,"p B Yp (6), A9 twice, PC;

142

8) Xp - Xtrue AYp (1), (4), (7), PC;

9) Y ((p vq) (1-p =q)) (8), Al, PA4;

10) Y(pvq) (Y-p-DYq) (9), A9 twice, PC;

11) Y(pv q) m (Xp v Yq) definition of Xp, (10),

PC;

12) Y(p =(pvq)) (11), Al, PA4;

13) Yp D Y (p v q) (12), A9, PC;

14) Yq z Y(pv q) symmetry, (13)

15) YpvYq z Y(pvq) (13), (14), PC;

16) Xp n Yp (8), PC;

17) Xp v Yq Yp v Yq (15), (16), PC;

18) Xp vYq E Yp vYq Y(pv q)

(11) , (15) , (17), PC;

19) Y(pA q p) Al, PA4;

20) Y(p oq) Yp (19), A9, PC;

21) Y(pAq) m Yq symmetry, (20);

22) Y(p= (q=p Aq)) Al, PA4;

23) Yp (Yq=Y(p Ag)) (22), A9 twice, PC;

24) Yp Yq.*Y(p %q) (22), PC;

25) YpAYq B Y(pAq) (20), (21), (24), PC.

The reader should have no difficulty proving those

parts of theorem TA4 which are not lines above.

'4

4 o

143

Theorem TAS. OXp Z XOP.

Proof.

1) 0D(Xp Xtrue AYp) TA4 (h) PA2;

2) QXp ED(Xtrue ̂ Yp) (1), A3 twice, PC;

3) EDXP E 0 Xtrue A~Yp (2), TA2, PC;

4) DIXtrue = Xtrue A2;

5) O3Xp Xtrue A 0 Yp (3), (4), PC;

6) D3Xp Xtrue AY QP (5), A7, PC;

7) X C2p F Xtrue AY P TA4(h);

B) 11Xp :-x QP (6), (7), PC.

Some definitions of sets and formulas in the tableau

T(p 0 make the completeness proof more concise.

S' {q C S q has the form P, %,P, D3p or n-p
V
S" S -S

.1 x p: Yp i: Sj U {'-'p: "-Yp C S,,

v

144

0 (a I v ... v ak v v v 'b
0(Yal V ... V Yak v Yb v ... v 'Yb) Sv).

Pv= A q.
qcSv

vv
P- A q.P A q

qv Z qCS

We now state four lemmas, then prove that system A

is complete.

Lemma 4.16. For TRI-TRl2,

a) If p q g,r is a transformation, then - (p - q A r);

b) If p * q or r is a transformation, then

(p - q v r).

Proof. Routine.

Lemma 4.17. For every node v in T(po) (consistent or
0

inconsistent), I- (p V zv)"

Proof. Laina 4.17 is proven almst identically to lemma 4.11.

Woere that proof uses the fact that if p is transformed to q, then

q z p is valid, here we must use the fact that q - p is provable.

That follwcs from lema 4.16. 1

Lemma 4.18. Suppose there is an X-arc leaving node

v, and u1, ... , un are all of the nodes in T(p0) (both

consistent and inconsistent) which are reachable from v by

an X-arc. Then (P (Pu V Pun"

...U Un , , ," i # , o

145

Proof. Nodes u., ..., un were created by first

creating a node u0 by TRl4, and then splitting u0 by

or type transformations. We show that at every stage

in the reduction of u to ul, ..., u, if U uk

are the present nodes, then (px = (P V v P

The base case, uO , is trivial since TR14 sets Su S.

As each transformation TRI-TRI2 is applied, either a

conjunct of P is replaced by provably equivalent
1

conjuncts for some i, by lemma 4.16(a), or u' is split
1

by an or type transformation into u- and u"'. By

lemma 4.16 (b), F(P-V Pu.. P l. Hence HP M

Pui V... V Putlv P .u-vPu-- vPu -v ... V pu;) by PC.

1 i l k

The formula added to v by TRl6(a) is implied by formulas

already in Sv . TRl6(b) adds no formulas to the original

node of a group of nodes connected by O-arcs, and only

that original node can have an X-arc pointing to it.

It is easy to see that the filtration rule preserves

lemma 4.18. 1

Lemma 4.19. Suppose there is a u such that vXu.

Then F (p z Xp)
V

Proof. Let the Y, WY and 0 formulas in S be Ya l ,

i i S.I..., Ya k,-Ybl, 40.., %Yb11, 0(Ycl t.., Vyc v %Yd 1..

v,%Yd), for i-1, ... , t. By definition Pv
n

146

a. A ba 0 V v V d). Because every

member of Sv is a conjunct in pv we have

(p= A Y a AA --Yb AA 0 (V Yc V Yd)).
J J

Theorem TA4 can be used to bring conjunctidns and dis-

junctions of Y and %Y formulas under a single Y. Axiom

A7 is used to move a Y outside of a 0. We get

-(p -- Y(a ai A^ -'b A A 3 0(Vc vV d"i)),

v 1 1 1 1

X
- v > YPv"

Moreover, TR14 only draws an X-arc from v to u if either

R > 0 orm. = 0 for some i. In either case, TA4 and A2

permit us to prove the stronger form

S XpXFPV XV"

We now finish the proof of theorem 4.7, proving

(3) z (2) and (2) = (1).

Lemma 4.20. ((2) = (1)) If pv is provable then

%pv is valid.

Proof. By soundness of system A.

Lenme 4.21. ((3) 4 (2)) If v is inconsistent in

T(p 0), then np' p

-~~ .A

147

Proof. The proof is by induction on the order

in which nodes are marked inconsistent.

V
Case 1. Suppose v is marked inconsistent by C1.

Then Z contains both p and 'p. By lemma 4.17,
V

(pvIlp A p), so by PC, F %p"

"v v - ' k '

148

Case 2. Suppose v is marked inconsistent by C2.

Then S, contains H and there is an X-arc leaving v. Byvx

lemma 4.19, F pv XX, so by TA4(h) F = X true.

Using axiom A6 and PC, we have F %P

Case 3. Suppose v is marked inconsistent by C3.

Then there must be a node u connected to v by a *-arc,

and which is marked inconsistent earlier than v. Let p'

a A ... A an and P" = bA ... A bn Define pv = %a1

v ... v 'an , and pv" =-b v ... v %bn.

F Pu by induction,

~(P'A P) byp p ~
u u u Pu Pu

(* v P by PC,
u u

F -0(~ by PA2.

Every formula in Pu either begins with '" 0 or ^- ,

or is '-P or ""-P for some basic formula P, by the definition

of pu. v' can be eliminated at step (*) by PC. By
u

repeated application of theorem TA3,

By TR16(a), D, [is in S', and so n'-0 PU" is a
pu u u

disjunct in PC eliminates duplicate disjuncts, giving

F IPu -by PC,
pu

SP by lemma 4.9,

F 1-,p bypv= PvA P

Case 4. Suppcse v is marked inconsistent by C4. Then

there is an X-arc leaving v, and all of the nodes u1 , ... ,

149

which are pointed to by X-arcs from v are marked inconsis-

tent before v.

A (u. inconsistent)1 1

S Puby induction,

-'p by PC,
i uI

F --P, by lemma 4.18,

SG np by PA3,

x\,P v by A10,

F "Ix P ,

" Pv by lemma 4.19.

Case 5. Suppose v is made inconsistent by C5. Let
vie ... be all of the nodes (including v itself)

V k

which are reachable from v by a path of zero or more X-arcs,

and which are consistent when C5 applies to v. We may

assume that C1 is applied wherever possible before C5 is

used. We can show that every vi has an X-arc leaving it.

For, in order for C5 to apply, every Zvi must contain

both %(pWq) and p. If ,.(pWq) is transformed to q,p and

'-Y(pWq) by TR4, then v. must have an X-arc leaving it.1!

On the other hand, if '%(pWq) is transformed to q and ^.p,

then v is inconsistent by Cl. Let v1, .. , Vm

be all of the nodes for which X V , for i - 1, k..,
3

j -1, ... , mI. Wa write P for P and P for p1]

(1) Pi x) by lemma 4.19;

150

x(2) - (p. D V p) by lemma 4.18;
j

x i
(4) X pD XVp by (3), TA4(d);

(5) hl= x v () s lcn PC;

(6) Vcombined by PC

I 1
i

(10) - qpiq by (9 1), 1 4 h;

(12) I q Pi by (11C; ll

Bu c8 ontas for allr i, so lcby lemm ie by17

(14) j. (/pj)frali

9 i

(15) F Pi (q by (1), PCA3T;

(16) 1- G(q = p) by (1) , PA3,

12) F qi = X P by (11), All P.

(17) Fe GqGp by (16), A12;

i 1
1101 q Yq y 19, TA (h) ; -

151

(18) Pi Gp by pi q, (12),

(17), PC;

(19) 1- Pi - pWq by A13.

Choosing vi = v, we see that

(20) p =) P pWq.

But ',(pWq) is in Zv, or C5 wouldn't apply. By lemma 4.16

(21) Pv D %(pWq),

and, combining (20) and (21) we have

Theorem 4.22 (completeness) ii p is valid then

p is provable in system A.

Proof. Let u1 , .. , un be all of the nodes in T(Xp)

which are reachable from v0 by an X-arc. v0 is not changed

when it contains X"-p, so p = X'Vp.

p valid

Yp is valid

v0 is inconsistent in T(X,p)

by theorem 4.7,

Ul, ... , Un are inconsistent

by consistency rule C4,

vp u for all i by theorem 4.7,

P (PuV ... v P by PC,
Ui Un

P. pvx by lemma 4.18, PC.

0'S

152

But p X is just "p, so
0 0

p by PC.

Gabbay et al. define a proof system DUX for the

logic of until on infinite paths. Their axioms are

related to AB-A14, but are different due to their slightly

different definitions of G and X, and the fact that their

paths must be infinite. Our system was developed

independently of theirs, and our completeness proof is

quite different from theirs. As it is possible to

express in MPL that a path is infinite, our method

encompasses theirs.

As a final corollary to the decision method for MPL,

we note that the LL-processes, those defined by finite

LL-graphs, are complete for MPL.

Theorem 4.23. Every satisfiable MPL formula is

satisfied by a model whose process is an LL-process. U

Chapter 5

Programs in Process Logic

In this chapter we define an extension MPL/P of MPL

by adding programs to the syntax of formulas. Though

MPL/P is a natural extension of MPL, MPL/P proves much

more difficult to analyze than MPL. We have few results

concerning MPL/P.

The main purpose of this chapter is to give a formal

definition of MPL/P, an important extension of MPL, and

to relate the expressive power of MPL/P to that of other

logics. In judging the relative power of two logics of

processes, it is only fair that either both have programs,

or neither has programs. We show that MPL/P is more

expressive than PDL or SOAPL, and is at least as expres-

sive as PDL+ and Nishimura's process logic, NL. We con-

jecture that MPL/P is strictly more expressive than all

four of the above logics.

5.1. Definitions

In this section we define MPL/P. Programs were

defined in Chapter 1. For MPL/P, we need to extend

programs to labeled programs.

Labels

The usual method of reasoning about a program is to

154

reason about each part separately, combining the separate

results to obtain a result applying to the whole. While

that method works well for sequential programs, we encoun-

ter difficulties when trying to use it for concurrent

programs. The behavior of a running in isolation can be

so different from its behavior when running concurrently

with , that we can never divorce a from a when we reason

about a//s. Nevertheless, we would like to be able to

discuss a's contribution to the system a//a. We do that

by giving a a name, say k.. By referencing k., we can make

statements such as:

1) In a//B, whenever a halts, p holds;

2) (finite delay) on every infinite path, a makes

infinitely many transitions;

3) a preserves the truth of p (though a may not).

This is the sort of non-interference property which is

implicit in Owicki's proof technique, but which cannot

be expressed in her logic.

Labels have many different uses. It is clear that

we need some means of referring to parts of a program.

But it is not the purpose of this work to study the

relationships between various forms of label references.

Rather, we simply demonstrate what can be said with certain

types of label references. Thus we feel justified in

providing MPL/P with a variety of means of referring to

labels. it may turn out that some are expressible

in terms of the others.

Labels have basically two different uses; as position

labels, telling the current value of a program counter,

and as transition labels, telling which part of a program-

makes a particular transition. Statement (1) above uses

a position label to tell when ax has terminated; that is,

when ax is at its final label. Statement (2) uses a

transition label to determine whether ax makes any

transitions.

Labels are added to processes as follows. To every

transition is added two sets of labels from a label set

r. The first set consists~ of position labels, the second

set of transition labels.

'I (u) ((rU) x u x P (r) x u) *+

11 (U) NY(k (U)).

The operator ":" is the labeling operator. If k is a

label and ax is a program, then k:cx is a program. Every

transition made by ax is labeled k. In 1 X2tevery

transition is labeled both 1£1 and 1 4The function

w: programs - n z(U) is defined as follows:

1. Basic programs have the usual semantics, with

S - T =0 in every transition <S,u,T,v>. The constraints

listed on page 12 apply to basic programs.

2. if p is a formula, then Op? is a program. The

box forces testable formulas to depend only on a stage

and a process, not on a path. If p is already independent

156

of a path, then Op=p, and the 0 may be ignored. As are

basic programs, tests are labeled 0.

3. w(£:a) is obtained from T(a) by replacing every

transition <S,u,T,v> by <S u {J), u, T u {t}, v>.

4. au 8, c;a and a* have the usual meanings.

5. The shuffle operator // must be defined so as

to maintain position labels. Transition labels need no

special treatment. If a and T are two transition

sequences, define a(T) to be a, with every transition

<S,u,T,v> replaced by <Su S', u, T, v>, where T =

<S',u',T',v >T If a102 ... c T(a) and T 1 T2 ... T 2T(7 ,

(any of the ai and Ti are permitted to be either empty,((02) (T2) (a 3

finite or infinite) then aI (1) T
1 2 a 22

is in T(cz//6).

The dot operator

An MPL formula describes a property of a process.

Until now, we have only tested the truth of a formula with

respect to the process T provided by an MPL structure.

A natural extension of MPL is to let a structure provide

many different processes, and to add to MPL a means of

specifying which process or combination of processes

is supposed to satisfy a given formula, The dot operator

serves that purpose, the formula aep meaning "p holds

for process r(a)."

157

5.2. Formal semantics of MPL/P

An MPL/P structure is a six-tuple A = (U, 0,no,

P 4o,,); where U, ° and 4o are the same as in an MPL

structure, and

is a set of basic programs,0

: 0 E0- + fi (U) assigns a process to each basic

program, and

r is a set of labels.

An MPL/P environment, providing all of the information

needed to determine the truth value of any MPL/P formula,

consists of a structure A, a process w, a path $ £ 7

and a stage T < 1P.

Let a be a labeled program, Z c F, p,q be MPL/P

formulas, and P c 4 be a basic formula.

1. P is an MPL/P formula. ,lp,T 0 P iff end(T)

0 4 (P).

2. %p, pv q are MPL/P formulas, with the usual

semantics.

3. Yp is an MPL/P formula. rp,-r Yp iff

((;p - <S,u,T,v>*' and T<S,u,T,v> is legal)

7r,4<Su,T,v> 1 p).

4. pWq is an MPL/P formula. t,,T ipWq iff

(V '') (Tf '< ((V ") " " , , " q)

4 , ,1 .1 P))

+ pfl

.d....

158

5. Op is an MPL/P formula. 13,, Op iff

(VIP' C 71) (ip'>T 4 7,IPV,T tp).

6. a.p is an MPL/P formula. Let u = end(T).

T,1,Tl a'p iff (V C W (a)) (> (u,) IT (a),*,

(u,)) p)

We provide a variety of formulas for referencing

labels.

7. NZ means "the next transition is made by

program k." T,l,T J= NP iff p = T<S,u,T,v>o, and

P c T.

8. in(t) means "some program is executing in k:c." i

'T,,TO in(k) iff p = T<S,u,T,v>P and P c S.

9. @Z means "some program is just ready to start

X:U." 7,i,TIMM@ iff (T=T'<S,u,T,v> and P g S, or

T=(u,A)) and (=T<S',u',T',v'> ' and I E S').

10. end(£) means "some program has just finished

:t." 7T, J,,T end(k) iff T=T'<S,u,T,v> and P c S and

(I= T<S',u',T',V'>*" and £ S', or W=).

Examples of formulas using labels are

1) whenever a terminates, p holds =

1: a) //0 -,3 G(end (k) M p);

2) a preserves p -

(t:a)ll3.G (pA N I Yp).

=-++ + gV

159

5.3. Expressive power of MPL/P

We begin by relating MPL/P to PDL +, SOAPL, and

NL. Each has been claimed (see [HP78], [Pa78], [N79))

to be a powerful logic, particularly NL, which

Nishimura shows is expressively complete for a class of

logics related to and including Pratt's process logic.

In each simulation, we assume that the logic being

simulated is defined in an appropriate manner over MPL/P

models, so that it makes sense to relate expressive powers

of the logics.

PDL
+

The [] and [] operators of PDL (see [HP78]) are

defined in MPL/P as follows:

[Up E ai.DG(HMp).

(a]+p +E fl]pAca-FYfalse.

Hence MPL/P is at least as expressive as PDL +. That MPL/P

is more expressive than PDL follows from the fact that SOAPL

is at least as expressive as PDL, and MPL/P is more

expressive than SOAPL.

SOAPL

Nishimura IN793 shows that NL can simulate SOAPL,

so we only need to simulate NL. That MPL/P is more

expressive than SOAPL follows from Parikh's result

[Pa78] that every satisfiable SOAPL formula is satisfied

by a closed process. A,(FYfalseAGXtrue), stating

160

that A contains no infinite paths, but A can always make

more progress, is satisfied by some non-closed A, but not

by any closed A.

NL

Nishimura's operator [a] is just our dot operator ..

Besides [a], NL has only until and Boolean functions,

which are easily handled by MPL/P. NL has no analog to

our 0 operator, which leads us to conjecture that NL

is weaker than MPL/P.

Recently Harel, Kozen and Parikh [HKPBO] have

defined a process logic PL which merges temporal logic

and PDL in a way somewhat different from MPL. PL was

unknown to us when we developed MPL. In PL, all formulas,

including basic formulas, depend for their truth values

on paths. The semantics of the PDL operator <a>p is

changed as follows:

S<a>p if f 3 C Ir(a) (.'P).

Additionally, PL includes the until operator, and an

operator f which is defined by

g I fp iff start(4j) O p.

The relation between PL and MPL/P is not at all clear.

Due to our result that nonstandard and standard semantics

produce the same satisfiable formulas, it might not be

important that basic formulas are interpreted over paths

......................................

161

in PL. But MPL/P does not appear to be able to simulate

<a>p, due to the fact that <a>p depends on an entire path,

not just its final state. Conversely, PL does not appear

to have any means of expressing branching time properties

of programs.

Finite delay

Our // operator permits one component to run forever,

to the exclusion of the other. In some applications we

may want to assume that // is fair, so that any component

which is active eventually gets to run a step. Even with

our unfair // operator, MPL/P can be used to discuss

programs with a fair // operator. For example, suppose

our fairness criterion is that, on every infinite path

in a//8, both a and B make infinitely many transitions.

Let

FD(M) (GXtrue GFNI).

Then

(1:a)//(£ 2 0).(FD(1)^ FD(1£2) mp)

states that every fair path in a//$ obeys p. FD(t) is

an over simple fairness criterion. A more reasonable one

takes into account that one of the components may terminate

or remain blocked forever. A statement which takes into

account those possibilities is

L. _ _

hA

162

FD2(M) E GXtrue m (Fend(9)v GFN£ vFGD0IN k,

which states that, on every infinite path, either program

I terminates, or it makes infinitely many transitions,

or beyond some stage it is never possible for k to make

the next transition, even on a different path.

Partial correctness proofs

One test of the power of a logic is whether existing

proofs can be carried out within that logic. In order to

use a particular proof method, not only the end results

but all of the intermediate results must be expressible

in the logic. Suitable proof rules can then be written.

Owicki [OG76] gives a proof system for proving

partial correctness assertions about concurrent programs.

A very important notion in her proof system is that of

non-interference; that 4s, in a//$, no step of a can cause

p to change from true to false. We have shown above that

non-interference can be expressed in MPL/P. Owicki's

logic provides no mechanism for expressing non-interfer-

ence, with the result that non-interference must be added

artificially to a proof rule, whose antecedents are not

formulas, but are proofs. By expressing non-interference

in MPL/P, we carry out simulations of Owicki-atyle

proofs, using the usual sort of proof rules, which prove

certain formulas, given certain other formulas, Further-

g~k A5_

163

more, we are permitted greater flexibility. If we have

designed our program so that 0 does not interfere with

a because a preserves p, we can prove, once and for all,

that a preserves p in a//0. We might then show that

a//A works correctly (for some suitable meaning of

"correct") whenever A preserves p.

5.4. Conclusion

We have shown that MPL/P is a powerful logic of

processes. Moreover, with such statements as "a cannot

deadlock," written in MPL/P as a-0G(Hv *Xtrue), and the

statement that all finite delay paths of a//a obey p,

we have shown that at least a good part of the power of

MPL/P is needed. Any logic of processes which is less

expressive than MPL/P should have its lack of power

justified, whether to permit analysis, or because for a

certain application the full power of MPL/P is not

needed.

We have no decision method or proof system for MPL/P.

The tableau method used for MPL does not readily extend

to MPL/P. It seems unlikely that the addition of

programs to MPL results in an undecidable logic. The

existence of a complete proof system for PL [HKPeO], which

appears to have some features in common with MPL/P, is

encouraging.

REFERENCES

A79 Abrahamson, K., "Modal logic of concurrent
nondeterministic programs," Lecture Notes in
Computer Science 70, ed. G. Kahn, Springer-
Verlag, Berlin, Heidelberg, New York (1979),
21-33.

A80 Abrahamson, K., "Boolean variables in regular
expressions and finite automata," Tech. Report
80-08-02, Univ. of Wash., Seattle, Washington,
1980.

AHU74 Aho, V. A., J. E. Hopcroft and J. D. Ullman,
The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass.

BP78 Berman, F. and G. L. Peterson, "Expressiveness
hierarchy for PDL with rich tests (extended
abstract)," manuscript, Department of Computer
Science, University of Washington, Seattle
(1978).

CS76 Chandra, A. K. and L. J. Stockmeyer, "Alterna-
tion," Proceedings of 17th IEEE Symposium on
Foundations of Computer Science (1976), 98-108.

Co70 Cohen, R. S., "Star height of certain families
of regular events," JCSS 4 (1970), 281-297.

D78 Dijkstra, E. W., L. Lamport, A. J. Martin, C.
S. Scholten and E. M. F. Steffens, "On-the-fly
garbage collection: an exercise in Cooperation,"
CAQM 21, 11 (1978), 966-975.

F167 Floyd, R. N., "Assigning meanings to programs,"
Proceedings of Symposium on Applied Math. 19,
(1967), 19.32.

FL79 Fischer, M. J. and R. E. Ladner, "Propositional
dynamic logic of regular programs," JCSS 18
(1979), 194-211.

FP76 Francez, N. and A. Pnueli, "A proof method for
cyclic programs," Proceedings of IEEE Interna-
tional Conference on Parallel Processing (1976),
235-245.

165

GPSS80 Gabbay, D., A. Pnueli, S. Shelah and J. Stavi,
"On the temporal analysis of fairness,"
Proceedings of 7th Symposium on Principles of
Programming Languages (1980), 163-173.

GS65 Ginsburg, S. and E. H. Spanier, "Mappings of
languages by two tape devices," J. ACM 12 (1965),
423-434.

HKP80 Harel, D., D. Kozen and R. Parikh, "Process
logic: expressiveness, decidability, complete-
ness (extended abstract)," manuscript, IBM
Watson Research Center, Yorktown Heights, New
York (1980).

HP78 Harel, D. and V. R. Pratt, "Nondeterminism in
logics of programs," Proceedings of 5th Annual
ACM Symposium on Principles of Programming
Languages (1978), 203-213.

Ho69 Hoare, C. A. R., "An axiomatic basis for compu-
ter programming," CACM 12, (1969), 576-580.

Ho76 Hoare, C. A. R., "Communicating sequential
processes," CACM 21,8 (1978) 666-677.

HC68 Hughes, G. E. and M. J. Cresswell, An Introduction
to Modal Logic, London, Methuen, 1968.

K68 Kamp, J. A. W., "Tense logic and the theory of
linear order," Univ. of California, Los Angeles,
Ph.D. thesis, 1968.

Ko76 Kozen, D., "On parallelism in Turing machines."
Proceedings of 17th IEEE Symposium on Foundations
of Computer Science (1976), 89-97.

L80 Lamport, L., "'Sometime' is sometimes 'not
never'," Proceedings of 7th Annual ACM Symposium
on Principles of Programming Languages (1980),174-185.

LF79 Lynch, N. A. and M. J. Fischer, "On describing the
behavior and implementation of distributed sys-
tems," Lecture Notes in Computer Science 70,
ed. G. Kahn1 Springer-Verlag, Berlin, Heidelberg,
New York (1979), 147-171.

166

MW78 Manna, Z. and R. Waldinger, "is 'sometime'
sometimes better than 'always'?," CACM 21,2
(1978), 159-172.

M74 Meyer, A. R., "Weak monadic Second order theory
of successor is not elementary recursive,"
Lecture Notes in Mathematics 453, Springer-
Verlag (1975), 132-154.

MM77 Milne, G. and R. Milner, "Concurrent processes
and their syntax," Internal Report CSR-2-77,
Department of Computer Science, Edinburg, May
1977.

N79 Nishimura, H., "Descriptively complete process
logic," manuscript, Kyoto University, Kyoto,
Japan (1979).

OG76 Owicki, S. and D. Gries, "An axiomatic proof
technique for parallel programs," Acta Informa-
tica 6,4 (1976), 319-340.

Ow78 Owicki, S., Colloquium presentation, Univ.
of Washington (1978).

Pa78 Parikh, R., "A decidability result for second
order process logic," Proceedings of 19th IEEE
Symposium on Foundations of Computer Science
(1978), 177-183.

Pn77 Pnueli, A., "The temporal logic of programs,"
Proceedings of 18th IEEE Symposium on Foundations
of Computer Science (1977), 46-57.

Pn79 Pnueli, A., "The temporal semantics of concurrent
programs," Lecture Notes in Computer Science 70,
ed. G. Kahn, Springer-Verlag, Berlin, Heidelberg,
New York (1979), 1-20.

Pr76 Pratt, V. R., "Semantical considerations on
Floyd-Hoare logic," Proceedings of 17th IEEE
Symposium on Foundations of Computer Science
(1976), 109-121.

Pr7B Pratt, V. R., "A practical decision method for
propositional dynamic logic," 10th Annual ACM
Symposium on Theory of Computing (1978), 326-337.

167

Pr8O Pratt, V. R., "Flowgraph logic and the elimina-
tion of Kleene elimination," manuscript, Depart-
ment of Computer Science, Massachusetts Institute
of Technology, April, 1980.

R69 Rabin, M. 0., "Decidability of second order
theories and automata on infinite trees,"
Transactions of American Mathematical Society
141 (1969), 1-35.

RP80 Reif, J. H. and G. L. Peterson, "A dynamic logic
of multiprocessing with incomplete information,"
Proceedings of 7th Annual ACM Symposium on
Principles of Programming Languages (1980),
193-202.

St74 Stockmeyer, L. J., "The complexity of decision
problems in automata theory and logic," Ph.D.
thesis, Massachusetts Institute of Technology,
1974.

-I ,

Vita

Karl Raymond Abrahamson

Born November 5, 1953 in Palo Alto, California

Education: r

Cubberly Senior High School, Palo Alto, California

9/69 - 6/71

Foothill Community College, Los Altos Hills,
California

9/71-6/73

University of Washington, Seattle, Washington

9/73-6/75

University of Washington, Seattle, Washington

9/75-9/80

Degrees:

Bachelor of Science from University of Washington

(Department of Mathematics), 9/75

DISTRIBUTION LIST

Office of Naval Research Contract N00014-80-C-0221
Michael J. Fischer, Principal Investiqator

Defense Documentation Center Mr. E. H. Gleissner
Cameron Station Naval Ship Research and
Alexandria, VA 22314 Development Center
(12 copies) Computation and Mathematics Dept.

Bethesda, MD 20084
Office of Naval Research (I copy)
800 North Quincy Street
Arlington, VA 22217 Captain Grace M. Hooper (008)

Naval Data Automation CommandDr. R. B. Grafton, Scientific Washington Navy Yard

Officer (I copy)

Information Systems Program (437) Building 166

(2 copies) Washington, D.C. 20374

Code 200 (1 copy) (1 copy)

Code 455 (1 copy) Defense Advanced Research Projects
Code 458 (1 copy) Agenry

Office of Naval Research Attn: Program Management/MIS
Branch Office, Pasadena 1400 Wilson Boulevard

1030 East Green Street Arlington, VA 22209

Pasadena, CA 91106 (3 copies)

(I copy)

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D.C. 20375
(6 copies)

Office of Naval Research
Resident Representative
University of Washington, JD-27
422 University District Building
1107 NE 45th Street
(I copy)

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-l
Washington, D.C. 20380
(1 copy)

Naval Ocean Systems Center
Advanced Software Technology Division
Code 5200
San Diego, CA 92152
(I copy)

.'. ~ __

DATE

FILM E

